Spaces:
Sleeping
Sleeping
import os | |
import time | |
import json | |
import logging | |
from dotenv import load_dotenv | |
from langgraph.graph import StateGraph, END | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_community.tools import DuckDuckGoSearchRun | |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader | |
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage | |
from langchain_core.tools import tool | |
from typing import TypedDict, Annotated, Sequence | |
import operator | |
import random | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger("GAIA_Agent") | |
# Load environment variables | |
load_dotenv() | |
google_api_key = os.getenv("GOOGLE_API_KEY") or os.environ.get("GOOGLE_API_KEY") | |
if not google_api_key: | |
raise ValueError("Missing GOOGLE_API_KEY environment variable") | |
# --- Math Tools --- | |
def multiply(a: int, b: int) -> int: | |
"""Multiply two integers.""" | |
return a * b | |
def add(a: int, b: int) -> int: | |
"""Add two integers.""" | |
return a + b | |
def subtract(a: int, b: int) -> int: | |
"""Subtract b from a.""" | |
return a - b | |
def divide(a: int, b: int) -> float: | |
"""Divide a by b, error on zero.""" | |
if b == 0: | |
raise ValueError("Cannot divide by zero.") | |
return a / b | |
def modulus(a: int, b: int) -> int: | |
"""Compute a mod b.""" | |
return a % b | |
# --- Browser Tools --- | |
def wiki_search(query: str) -> str: | |
"""Search Wikipedia and return up to 3 relevant documents.""" | |
try: | |
# Ensure query contains "discography" keyword | |
if "discography" not in query.lower(): | |
query = f"{query} discography" | |
docs = WikipediaLoader(query=query, load_max_docs=3).load() | |
if not docs: | |
return "No Wikipedia results found." | |
results = [] | |
for doc in docs: | |
title = doc.metadata.get('title', 'Unknown Title') | |
content = doc.page_content[:2000] # Limit content length | |
results.append(f"Title: {title}\nContent: {content}") | |
return "\n\n---\n\n".join(results) | |
except Exception as e: | |
return f"Wikipedia search error: {str(e)}" | |
def arxiv_search(query: str) -> str: | |
"""Search Arxiv and return up to 3 relevant papers.""" | |
try: | |
docs = ArxivLoader(query=query, load_max_docs=3).load() | |
if not docs: | |
return "No arXiv papers found." | |
results = [] | |
for doc in docs: | |
title = doc.metadata.get('Title', 'Unknown Title') | |
authors = ", ".join(doc.metadata.get('Authors', [])) | |
content = doc.page_content[:2000] # Limit content length | |
results.append(f"Title: {title}\nAuthors: {authors}\nContent: {content}") | |
return "\n\n---\n\n".join(results) | |
except Exception as e: | |
return f"arXiv search error: {str(e)}" | |
def web_search(query: str) -> str: | |
"""Search the web using DuckDuckGo and return top results.""" | |
try: | |
search = DuckDuckGoSearchRun() | |
result = search.run(query) | |
return f"Web search results for '{query}':\n{result[:2000]}" # Limit content length | |
except Exception as e: | |
return f"Web search error: {str(e)}" | |
# --- Load system prompt --- | |
with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
system_prompt = f.read() | |
# --- Tool Setup --- | |
tools = [ | |
multiply, | |
add, | |
subtract, | |
divide, | |
modulus, | |
wiki_search, | |
arxiv_search, | |
web_search, | |
] | |
# --- Graph Builder --- | |
def build_graph(): | |
# Initialize model with Gemini 2.5 Flash | |
llm = ChatGoogleGenerativeAI( | |
model="gemini-2.5-flash", | |
temperature=0.3, | |
google_api_key=google_api_key, | |
max_retries=0, # Disable internal retries | |
request_timeout=30 # Keep timeout reasonable | |
) | |
# Bind tools to LLM | |
llm_with_tools = llm.bind_tools(tools) | |
# 1. Define state structure | |
class AgentState(TypedDict): | |
messages: Annotated[Sequence, operator.add] | |
step_count: int | |
start_time: float | |
last_action: str | |
api_errors: int # Track consecutive API errors | |
# 2. Create graph | |
workflow = StateGraph(AgentState) | |
# 3. Define node functions | |
def agent_node(state: AgentState): | |
"""Main agent node with manual retry handling""" | |
# Ensure state has required fields | |
state.setdefault("start_time", time.time()) | |
state.setdefault("step_count", 0) | |
state.setdefault("last_action", "start") | |
state.setdefault("api_errors", 0) | |
# Check global timeout (2 minutes) | |
if time.time() - state["start_time"] > 120: | |
return { | |
"messages": [AIMessage(content="AGENT ERROR (GLOBAL_TIMEOUT): Execution exceeded 2-minute limit")], | |
"step_count": state["step_count"] + 1, | |
"start_time": state["start_time"], | |
"last_action": "timeout", | |
"api_errors": state["api_errors"] | |
} | |
# Check step limit (max 8 steps) | |
if state["step_count"] >= 8: | |
return { | |
"messages": [AIMessage(content="AGENT ERROR (STEP_LIMIT): Exceeded maximum step count of 8")], | |
"step_count": state["step_count"] + 1, | |
"start_time": state["start_time"], | |
"last_action": "step_limit", | |
"api_errors": state["api_errors"] | |
} | |
# Check consecutive API errors | |
if state["api_errors"] >= 3: | |
return { | |
"messages": [AIMessage(content="AGENT ERROR (API_LIMIT): Too many consecutive API errors")], | |
"step_count": state["step_count"] + 1, | |
"start_time": state["start_time"], | |
"last_action": "api_limit", | |
"api_errors": state["api_errors"] | |
} | |
try: | |
# Add variable delay to avoid rate limiting | |
delay = 2 + random.uniform(0, 3) # 2-5 seconds | |
time.sleep(delay) | |
# Call API without automatic retries | |
response = llm_with_tools.invoke(state["messages"]) | |
# Reset error counter on success | |
return { | |
"messages": [response], | |
"step_count": state["step_count"] + 1, | |
"start_time": state["start_time"], | |
"last_action": "agent", | |
"api_errors": 0 # Reset error counter | |
} | |
except Exception as e: | |
# Detailed error logging | |
error_details = f"Gemini API Error: {type(e).__name__}: {str(e)}" | |
logger.error(error_details) | |
error_type = "UNKNOWN" | |
if "429" in str(e) or "ResourceExhausted" in str(e): | |
error_type = "RESOURCE_EXHAUSTED" | |
elif "400" in str(e): | |
error_type = "INVALID_REQUEST" | |
elif "503" in str(e): | |
error_type = "SERVICE_UNAVAILABLE" | |
error_msg = f"AGENT ERROR ({error_type}): {error_details[:300]}" | |
return { | |
"messages": [AIMessage(content=error_msg)], | |
"step_count": state["step_count"] + 1, | |
"start_time": state["start_time"], | |
"last_action": "error", | |
"api_errors": state["api_errors"] + 1 # Increment error counter | |
} | |
def tool_node(state: AgentState): | |
"""Tool execution node""" | |
# Ensure state has required fields | |
state.setdefault("start_time", time.time()) | |
state.setdefault("step_count", 0) | |
state.setdefault("last_action", "start") | |
state.setdefault("api_errors", 0) | |
# Check global timeout (2 minutes) | |
if time.time() - state["start_time"] > 120: | |
return { | |
"messages": [AIMessage(content="AGENT ERROR (GLOBAL_TIMEOUT): Execution exceeded 2-minute limit")], | |
"step_count": state["step_count"] + 1, | |
"start_time": state["start_time"], | |
"last_action": "timeout", | |
"api_errors": state["api_errors"] | |
} | |
last_msg = state["messages"][-1] | |
tool_calls = last_msg.additional_kwargs.get("tool_calls", []) | |
responses = [] | |
for call in tool_calls: | |
tool_name = call["function"]["name"] | |
tool_args = call["function"].get("arguments", {}) | |
tool_func = next((t for t in tools if t.name == tool_name), None) | |
if not tool_func: | |
responses.append(f"Tool {tool_name} not available") | |
continue | |
try: | |
# Parse arguments | |
if isinstance(tool_args, str): | |
try: | |
tool_args = json.loads(tool_args) | |
except json.JSONDecodeError: | |
if "query" in tool_args: | |
tool_args = {"query": tool_args} | |
else: | |
tool_args = {"query": tool_args} | |
# Execute tool | |
result = tool_func.invoke(tool_args) | |
responses.append(f"{tool_name} result: {str(result)[:1000]}") | |
except Exception as e: | |
responses.append(f"{tool_name} error: {str(e)}") | |
tool_response_content = "\n".join(responses) | |
return { | |
"messages": [AIMessage(content=tool_response_content)], | |
"step_count": state["step_count"] + 1, | |
"start_time": state["start_time"], | |
"last_action": "tool", | |
"api_errors": state["api_errors"] # Preserve error count | |
} | |
# 4. Add nodes to workflow | |
workflow.add_node("agent", agent_node) | |
workflow.add_node("tools", tool_node) | |
# 5. Set entry point | |
workflow.set_entry_point("agent") | |
# 6. Define conditional edges | |
def should_continue(state: AgentState): | |
last_msg = state["messages"][-1] | |
# Handle timeout or step limit errors | |
if "AGENT ERROR (GLOBAL_TIMEOUT)" in last_msg.content or "AGENT ERROR (STEP_LIMIT)" in last_msg.content or "AGENT ERROR (API_LIMIT)" in last_msg.content: | |
return "end" | |
# Handle all other errors | |
if "AGENT ERROR" in last_msg.content: | |
# For RESOURCE_EXHAUSTED errors, wait longer before retrying | |
if "RESOURCE_EXHAUSTED" in last_msg.content: | |
time.sleep(10 + random.uniform(0, 10)) # Wait 10-20 seconds | |
return "agent" | |
# Route to tools if tool calls exist | |
if hasattr(last_msg, "tool_calls") and last_msg.tool_calls: | |
return "tools" | |
# End if final answer is present | |
if "FINAL ANSWER" in last_msg.content: | |
return "end" | |
# Continue to agent otherwise | |
return "agent" | |
workflow.add_conditional_edges( | |
"agent", | |
should_continue, | |
{ | |
"agent": "agent", | |
"tools": "tools", | |
"end": END | |
} | |
) | |
# 7. Define flow after tool node | |
workflow.add_edge("tools", "agent") | |
# 8. Compile graph | |
return workflow.compile() | |
# Initialize agent graph | |
agent_graph = build_graph() | |
# Wrapper function to ensure execution within time limits | |
def run_agent(question): | |
# Create initial state with all required fields | |
initial_state = { | |
"messages": [ | |
SystemMessage(content=system_prompt), | |
HumanMessage(content=question) | |
], | |
"step_count": 0, | |
"start_time": time.time(), | |
"last_action": "start", | |
"api_errors": 0 | |
} | |
# Run with overall timeout | |
start_time = time.time() | |
result = None | |
end_state_reached = False | |
try: | |
# Execute with 3-minute overall timeout | |
for step in agent_graph.stream(initial_state): | |
# Check overall timeout every step | |
if time.time() - start_time > 180: # 3 minutes | |
return {"error": "Overall execution timeout (3 minutes)"} | |
# Capture the final state when the graph completes | |
if END in step: | |
result = step[END] | |
end_state_reached = True | |
break | |
except Exception as e: | |
return {"error": f"Execution failed: {str(e)}"} | |
# Extract final answer safely | |
if end_state_reached and result is not None: | |
if "messages" in result and result["messages"]: | |
return {"answer": result["messages"][-1].content} | |
else: | |
return {"error": "Agent finished but produced no messages"} | |
else: | |
return {"error": "Agent did not complete execution"} | |
# 示例调用函数(在app.py中使用) | |
def process_question(question): | |
# Add initial delay to avoid burst requests | |
time.sleep(1 + random.uniform(0, 2)) | |
response = run_agent(question) | |
if "answer" in response: | |
return response["answer"] | |
elif "error" in response: | |
return f"Error: {response['error']}" | |
else: | |
return "Unexpected response format" |