vtony's picture
Upload agent.py
0f4f3d7 verified
raw
history blame
13.3 kB
import os
import time
import json
import logging
from dotenv import load_dotenv
from langgraph.graph import StateGraph, END
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage
from langchain_core.tools import tool
from typing import TypedDict, Annotated, Sequence
import operator
import random
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("GAIA_Agent")
# Load environment variables
load_dotenv()
google_api_key = os.getenv("GOOGLE_API_KEY") or os.environ.get("GOOGLE_API_KEY")
if not google_api_key:
raise ValueError("Missing GOOGLE_API_KEY environment variable")
# --- Math Tools ---
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract b from a."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide a by b, error on zero."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Compute a mod b."""
return a % b
# --- Browser Tools ---
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia and return up to 3 relevant documents."""
try:
# Ensure query contains "discography" keyword
if "discography" not in query.lower():
query = f"{query} discography"
docs = WikipediaLoader(query=query, load_max_docs=3).load()
if not docs:
return "No Wikipedia results found."
results = []
for doc in docs:
title = doc.metadata.get('title', 'Unknown Title')
content = doc.page_content[:2000] # Limit content length
results.append(f"Title: {title}\nContent: {content}")
return "\n\n---\n\n".join(results)
except Exception as e:
return f"Wikipedia search error: {str(e)}"
@tool
def arxiv_search(query: str) -> str:
"""Search Arxiv and return up to 3 relevant papers."""
try:
docs = ArxivLoader(query=query, load_max_docs=3).load()
if not docs:
return "No arXiv papers found."
results = []
for doc in docs:
title = doc.metadata.get('Title', 'Unknown Title')
authors = ", ".join(doc.metadata.get('Authors', []))
content = doc.page_content[:2000] # Limit content length
results.append(f"Title: {title}\nAuthors: {authors}\nContent: {content}")
return "\n\n---\n\n".join(results)
except Exception as e:
return f"arXiv search error: {str(e)}"
@tool
def web_search(query: str) -> str:
"""Search the web using DuckDuckGo and return top results."""
try:
search = DuckDuckGoSearchRun()
result = search.run(query)
return f"Web search results for '{query}':\n{result[:2000]}" # Limit content length
except Exception as e:
return f"Web search error: {str(e)}"
# --- Load system prompt ---
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# --- Tool Setup ---
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
arxiv_search,
web_search,
]
# --- Graph Builder ---
def build_graph():
# Initialize model with Gemini 2.5 Flash
llm = ChatGoogleGenerativeAI(
model="gemini-2.5-flash",
temperature=0.3,
google_api_key=google_api_key,
max_retries=0, # Disable internal retries
request_timeout=30 # Keep timeout reasonable
)
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# 1. Define state structure
class AgentState(TypedDict):
messages: Annotated[Sequence, operator.add]
step_count: int
start_time: float
last_action: str
api_errors: int # Track consecutive API errors
# 2. Create graph
workflow = StateGraph(AgentState)
# 3. Define node functions
def agent_node(state: AgentState):
"""Main agent node with manual retry handling"""
# Ensure state has required fields
state.setdefault("start_time", time.time())
state.setdefault("step_count", 0)
state.setdefault("last_action", "start")
state.setdefault("api_errors", 0)
# Check global timeout (2 minutes)
if time.time() - state["start_time"] > 120:
return {
"messages": [AIMessage(content="AGENT ERROR (GLOBAL_TIMEOUT): Execution exceeded 2-minute limit")],
"step_count": state["step_count"] + 1,
"start_time": state["start_time"],
"last_action": "timeout",
"api_errors": state["api_errors"]
}
# Check step limit (max 8 steps)
if state["step_count"] >= 8:
return {
"messages": [AIMessage(content="AGENT ERROR (STEP_LIMIT): Exceeded maximum step count of 8")],
"step_count": state["step_count"] + 1,
"start_time": state["start_time"],
"last_action": "step_limit",
"api_errors": state["api_errors"]
}
# Check consecutive API errors
if state["api_errors"] >= 3:
return {
"messages": [AIMessage(content="AGENT ERROR (API_LIMIT): Too many consecutive API errors")],
"step_count": state["step_count"] + 1,
"start_time": state["start_time"],
"last_action": "api_limit",
"api_errors": state["api_errors"]
}
try:
# Add variable delay to avoid rate limiting
delay = 2 + random.uniform(0, 3) # 2-5 seconds
time.sleep(delay)
# Call API without automatic retries
response = llm_with_tools.invoke(state["messages"])
# Reset error counter on success
return {
"messages": [response],
"step_count": state["step_count"] + 1,
"start_time": state["start_time"],
"last_action": "agent",
"api_errors": 0 # Reset error counter
}
except Exception as e:
# Detailed error logging
error_details = f"Gemini API Error: {type(e).__name__}: {str(e)}"
logger.error(error_details)
error_type = "UNKNOWN"
if "429" in str(e) or "ResourceExhausted" in str(e):
error_type = "RESOURCE_EXHAUSTED"
elif "400" in str(e):
error_type = "INVALID_REQUEST"
elif "503" in str(e):
error_type = "SERVICE_UNAVAILABLE"
error_msg = f"AGENT ERROR ({error_type}): {error_details[:300]}"
return {
"messages": [AIMessage(content=error_msg)],
"step_count": state["step_count"] + 1,
"start_time": state["start_time"],
"last_action": "error",
"api_errors": state["api_errors"] + 1 # Increment error counter
}
def tool_node(state: AgentState):
"""Tool execution node"""
# Ensure state has required fields
state.setdefault("start_time", time.time())
state.setdefault("step_count", 0)
state.setdefault("last_action", "start")
state.setdefault("api_errors", 0)
# Check global timeout (2 minutes)
if time.time() - state["start_time"] > 120:
return {
"messages": [AIMessage(content="AGENT ERROR (GLOBAL_TIMEOUT): Execution exceeded 2-minute limit")],
"step_count": state["step_count"] + 1,
"start_time": state["start_time"],
"last_action": "timeout",
"api_errors": state["api_errors"]
}
last_msg = state["messages"][-1]
tool_calls = last_msg.additional_kwargs.get("tool_calls", [])
responses = []
for call in tool_calls:
tool_name = call["function"]["name"]
tool_args = call["function"].get("arguments", {})
tool_func = next((t for t in tools if t.name == tool_name), None)
if not tool_func:
responses.append(f"Tool {tool_name} not available")
continue
try:
# Parse arguments
if isinstance(tool_args, str):
try:
tool_args = json.loads(tool_args)
except json.JSONDecodeError:
if "query" in tool_args:
tool_args = {"query": tool_args}
else:
tool_args = {"query": tool_args}
# Execute tool
result = tool_func.invoke(tool_args)
responses.append(f"{tool_name} result: {str(result)[:1000]}")
except Exception as e:
responses.append(f"{tool_name} error: {str(e)}")
tool_response_content = "\n".join(responses)
return {
"messages": [AIMessage(content=tool_response_content)],
"step_count": state["step_count"] + 1,
"start_time": state["start_time"],
"last_action": "tool",
"api_errors": state["api_errors"] # Preserve error count
}
# 4. Add nodes to workflow
workflow.add_node("agent", agent_node)
workflow.add_node("tools", tool_node)
# 5. Set entry point
workflow.set_entry_point("agent")
# 6. Define conditional edges
def should_continue(state: AgentState):
last_msg = state["messages"][-1]
# Handle timeout or step limit errors
if "AGENT ERROR (GLOBAL_TIMEOUT)" in last_msg.content or "AGENT ERROR (STEP_LIMIT)" in last_msg.content or "AGENT ERROR (API_LIMIT)" in last_msg.content:
return "end"
# Handle all other errors
if "AGENT ERROR" in last_msg.content:
# For RESOURCE_EXHAUSTED errors, wait longer before retrying
if "RESOURCE_EXHAUSTED" in last_msg.content:
time.sleep(10 + random.uniform(0, 10)) # Wait 10-20 seconds
return "agent"
# Route to tools if tool calls exist
if hasattr(last_msg, "tool_calls") and last_msg.tool_calls:
return "tools"
# End if final answer is present
if "FINAL ANSWER" in last_msg.content:
return "end"
# Continue to agent otherwise
return "agent"
workflow.add_conditional_edges(
"agent",
should_continue,
{
"agent": "agent",
"tools": "tools",
"end": END
}
)
# 7. Define flow after tool node
workflow.add_edge("tools", "agent")
# 8. Compile graph
return workflow.compile()
# Initialize agent graph
agent_graph = build_graph()
# Wrapper function to ensure execution within time limits
def run_agent(question):
# Create initial state with all required fields
initial_state = {
"messages": [
SystemMessage(content=system_prompt),
HumanMessage(content=question)
],
"step_count": 0,
"start_time": time.time(),
"last_action": "start",
"api_errors": 0
}
# Run with overall timeout
start_time = time.time()
result = None
end_state_reached = False
try:
# Execute with 3-minute overall timeout
for step in agent_graph.stream(initial_state):
# Check overall timeout every step
if time.time() - start_time > 180: # 3 minutes
return {"error": "Overall execution timeout (3 minutes)"}
# Capture the final state when the graph completes
if END in step:
result = step[END]
end_state_reached = True
break
except Exception as e:
return {"error": f"Execution failed: {str(e)}"}
# Extract final answer safely
if end_state_reached and result is not None:
if "messages" in result and result["messages"]:
return {"answer": result["messages"][-1].content}
else:
return {"error": "Agent finished but produced no messages"}
else:
return {"error": "Agent did not complete execution"}
# 示例调用函数(在app.py中使用)
def process_question(question):
# Add initial delay to avoid burst requests
time.sleep(1 + random.uniform(0, 2))
response = run_agent(question)
if "answer" in response:
return response["answer"]
elif "error" in response:
return f"Error: {response['error']}"
else:
return "Unexpected response format"