Spaces:
Sleeping
Sleeping
| import os | |
| from dotenv import load_dotenv | |
| from langgraph.graph import START, StateGraph, MessagesState | |
| from langgraph.prebuilt import tools_condition | |
| from langgraph.prebuilt import ToolNode | |
| from langchain_google_genai import ChatGoogleGenerativeAI | |
| from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings | |
| from langchain_community.tools.tavily_search import TavilySearchResults | |
| from langchain_community.document_loaders import WikipediaLoader, ArxivLoader | |
| from langchain_community.vectorstores import SupabaseVectorStore | |
| from langchain_core.messages import SystemMessage, AIMessage, HumanMessage | |
| from langchain_core.tools import tool | |
| from langchain.tools.retriever import create_retriever_tool | |
| from supabase.client import Client, create_client | |
| # Load environment variables | |
| load_dotenv() | |
| # --- Math Tools --- | |
| def multiply(a: int, b: int) -> int: | |
| """Multiply two integers.""" | |
| return a * b | |
| def add(a: int, b: int) -> int: | |
| """Add two integers.""" | |
| return a + b | |
| def subtract(a: int, b: int) -> int: | |
| """Subtract b from a.""" | |
| return a - b | |
| def divide(a: int, b: int) -> float: | |
| """Divide a by b, error on zero.""" | |
| if b == 0: | |
| raise ValueError("Cannot divide by zero.") | |
| return a / b | |
| def modulus(a: int, b: int) -> int: | |
| """Compute a mod b.""" | |
| return a % b | |
| # --- Browser Tools --- | |
| def wiki_search(query: str) -> dict: | |
| """Search Wikipedia and return up to 2 documents.""" | |
| docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
| results = [f"<Document source=\"{d.metadata['source']}\" page=\"{d.metadata.get('page','')}\"/>\n{d.page_content}" for d in docs] | |
| return {"wiki_results": "\n---\n".join(results)} | |
| def web_search(query: str) -> dict: | |
| """Search Tavily and return up to 3 results.""" | |
| docs = TavilySearchResults(max_results=3).invoke(query=query) | |
| results = [f"<Document source=\"{d.metadata['source']}\" page=\"{d.metadata.get('page','')}\"/>\n{d.page_content}" for d in docs] | |
| return {"web_results": "\n---\n".join(results)} | |
| def arxiv_search(query: str) -> dict: | |
| """Search Arxiv and return up to 3 docs.""" | |
| docs = ArxivLoader(query=query, load_max_docs=3).load() | |
| results = [f"<Document source=\"{d.metadata['source']}\" page=\"{d.metadata.get('page','')}\"/>\n{d.page_content[:1000]}" for d in docs] | |
| return {"arxiv_results": "\n---\n".join(results)} | |
| # --- Load system prompt --- | |
| with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
| system_prompt = f.read() | |
| # --- System message --- | |
| sys_msg = SystemMessage(content=system_prompt) | |
| # --- Retriever Tool --- | |
| embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
| supabase = create_client(os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_SERVICE_KEY")) | |
| vector_store = SupabaseVectorStore( | |
| client=supabase, | |
| embedding=embeddings, table_name="documents", | |
| query_name="match_documents_langchain") | |
| retriever_tool = create_retriever_tool( | |
| retriever=vector_store.as_retriever( | |
| search_type="similarity", | |
| search_kwargs={"k": 5} | |
| ), | |
| name="Question Search", | |
| description="A tool to retrieve similar questions from the vector store." | |
| ) | |
| tools = [ | |
| multiply, | |
| add, | |
| subtract, | |
| divide, | |
| modulus, | |
| wiki_search, | |
| web_search, | |
| arxiv_search, | |
| ] | |
| # --- Graph Builder --- | |
| def build_graph(provider: str = "huggingface"): | |
| llm = ChatHuggingFace( | |
| llm=HuggingFaceEndpoint( | |
| repo_id = "Qwen/Qwen2.5-Coder-32B-Instruct" | |
| ), | |
| ) | |
| # Bind tools to LLM | |
| llm_with_tools = llm.bind_tools(tools) | |
| # Define no def assistant(state: MessagesState): """Assistant node""" | |
| return {"messages [ [llm_with_tools.invoke(state["messages"])]}se]} | |
| # Retriever returns AIMessage def retriever(state: MessagesState): | |
| """Retriever node""" | |
| similar_question = vector_store.similarity_search(state["messages"][0].content) | |
| print('Similar questions:') | |
| print(similar_question) | |
| if len(similar_question) > 0: | |
| example_msg = HumanMessage( | |
| content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}", | |
| ntent}]} | |
| return {"messages": [sys_msg] + state["messages"] + [example_msg]} | |
| return {"messages": [sys_msg] + state["m | |
| # Add nodesessages"]} | |
| builder = StateGraph(MessagesState) | |
| builder.add_node("retriever", retriever) | |
| builder.add_node("assistant", assistant) | |
| builder.add_node("tools", | |
| # Add edgesToolNode(tools)) | |
| builder.add_edge(START, "retriever") | |
| builder.add_edge("retriever", "assistant") | |
| builder.add_conditional_edges( | |
| "assistant", | |
| tools_condition, | |
| ) | |
| builder.add_edge("tools", "assistant")ever") | |
| # Compile graph | |
| return builder.compile() | |