import os from dotenv import load_dotenv from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition from langgraph.prebuilt import ToolNode from langchain_google_genai import ChatGoogleGenerativeAI from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from langchain_community.vectorstores import SupabaseVectorStore from langchain_core.messages import SystemMessage, AIMessage, HumanMessage from langchain_core.tools import tool from langchain.tools.retriever import create_retriever_tool from supabase.client import Client, create_client # Load environment variables load_dotenv() # --- Math Tools --- @tool def multiply(a: int, b: int) -> int: """Multiply two integers.""" return a * b @tool def add(a: int, b: int) -> int: """Add two integers.""" return a + b @tool def subtract(a: int, b: int) -> int: """Subtract b from a.""" return a - b @tool def divide(a: int, b: int) -> float: """Divide a by b, error on zero.""" if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Compute a mod b.""" return a % b # --- Browser Tools --- @tool def wiki_search(query: str) -> dict: """Search Wikipedia and return up to 2 documents.""" docs = WikipediaLoader(query=query, load_max_docs=2).load() results = [f"\n{d.page_content}" for d in docs] return {"wiki_results": "\n---\n".join(results)} @tool def web_search(query: str) -> dict: """Search Tavily and return up to 3 results.""" docs = TavilySearchResults(max_results=3).invoke(query=query) results = [f"\n{d.page_content}" for d in docs] return {"web_results": "\n---\n".join(results)} @tool def arxiv_search(query: str) -> dict: """Search Arxiv and return up to 3 docs.""" docs = ArxivLoader(query=query, load_max_docs=3).load() results = [f"\n{d.page_content[:1000]}" for d in docs] return {"arxiv_results": "\n---\n".join(results)} # --- Load system prompt --- with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() # --- System message --- sys_msg = SystemMessage(content=system_prompt) # --- Retriever Tool --- embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") supabase = create_client(os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_SERVICE_KEY")) vector_store = SupabaseVectorStore( client=supabase, embedding=embeddings, table_name="documents", query_name="match_documents_langchain") retriever_tool = create_retriever_tool( retriever=vector_store.as_retriever( search_type="similarity", search_kwargs={"k": 5} ), name="Question Search", description="A tool to retrieve similar questions from the vector store." ) tools = [ multiply, add, subtract, divide, modulus, wiki_search, web_search, arxiv_search, ] # --- Graph Builder --- def build_graph(provider: str = "huggingface"): llm = ChatHuggingFace( llm=HuggingFaceEndpoint( repo_id = "Qwen/Qwen2.5-Coder-32B-Instruct" ), ) # Bind tools to LLM llm_with_tools = llm.bind_tools(tools) # Define no def assistant(state: MessagesState): """Assistant node""" return {"messages [ [llm_with_tools.invoke(state["messages"])]}se]} # Retriever returns AIMessage def retriever(state: MessagesState): """Retriever node""" similar_question = vector_store.similarity_search(state["messages"][0].content) print('Similar questions:') print(similar_question) if len(similar_question) > 0: example_msg = HumanMessage( content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}", ntent}]} return {"messages": [sys_msg] + state["messages"] + [example_msg]} return {"messages": [sys_msg] + state["m # Add nodesessages"]} builder = StateGraph(MessagesState) builder.add_node("retriever", retriever) builder.add_node("assistant", assistant) builder.add_node("tools", # Add edgesToolNode(tools)) builder.add_edge(START, "retriever") builder.add_edge("retriever", "assistant") builder.add_conditional_edges( "assistant", tools_condition, ) builder.add_edge("tools", "assistant")ever") # Compile graph return builder.compile()