Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,066 Bytes
02a40a0 1cf572f 02a40a0 1cf572f 02a40a0 1cf572f 02a40a0 1cf572f 02a40a0 1cf572f 02a40a0 1cf572f 02a40a0 1cf572f 02a40a0 1cf572f 02a40a0 1cf572f 02a40a0 1cf572f 02a40a0 1cf572f 02a40a0 1cf572f 02a40a0 1cf572f 02a40a0 1cf572f 02a40a0 1cf572f 02a40a0 e0b7c76 02a40a0 1cf572f 02a40a0 dd282a3 02a40a0 1cf572f 02a40a0 1cf572f 02a40a0 1cf572f 02a40a0 1cf572f 02a40a0 1cf572f 02a40a0 1cf572f 02a40a0 4f54565 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
import sys
# Mock audio modules to avoid installing them
sys.modules["audioop"] = type("audioop", (), {"__file__": ""})()
sys.modules["pyaudioop"] = type("pyaudioop", (), {"__file__": ""})()
import torch
import gradio as gr
import supervision as sv
import spaces
from PIL import Image
from transformers import AutoProcessor, Owlv2ForObjectDetection, Owlv2Processor
from transformers.models.owlv2.modeling_owlv2 import Owlv2ImageGuidedObjectDetectionOutput, center_to_corners_format, box_iou
#from transformers.models.owlv2.image_processing_owlv2
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
@spaces.GPU
def init_model(model_id):
processor = AutoProcessor.from_pretrained(model_id)
model = Owlv2ForObjectDetection.from_pretrained(model_id)
model.eval()
model.to(DEVICE)
image_size = tuple(processor.image_processor.size.values())
image_mean = torch.tensor(
processor.image_processor.image_mean, device=DEVICE
).view(1, 3, 1, 1)
image_std = torch.tensor(
processor.image_processor.image_std, device=DEVICE
).view(1, 3, 1, 1)
return processor, model, image_size, image_mean, image_std
@spaces.GPU
def inference(prompts, target_image, model_id, conf_thresh, iou_thresh, prompt_type):
processor, model, image_size, image_mean, image_std = init_model(model_id)
annotated_image_my = None
annotated_image_hf = None
annotated_prompt_image = None
if prompt_type == "Text":
inputs = processor(
images=target_image,
text=prompts["texts"],
return_tensors="pt"
).to(DEVICE)
with torch.no_grad():
outputs = model(**inputs)
target_sizes = torch.tensor([target_image.size[::-1]])
result = processor.post_process_grounded_object_detection(
outputs=outputs,
target_sizes=target_sizes,
threshold=conf_thresh
)[0]
class_names = {k: v for k, v in enumerate(prompts["texts"])}
# annotate the target image
annotated_image_hf = annotate_image(result, class_names, target_image)
elif prompt_type == "Visual":
prompt_image = prompts["images"]
inputs = processor(
images=target_image,
query_images=prompt_image,
return_tensors="pt"
).to(DEVICE)
with torch.no_grad():
query_feature_map = model.image_embedder(pixel_values=inputs.query_pixel_values)[0]
feature_map = model.image_embedder(pixel_values=inputs.pixel_values)[0]
batch_size, num_patches_height, num_patches_width, hidden_dim = feature_map.shape
image_feats = torch.reshape(feature_map, (batch_size, num_patches_height * num_patches_width, hidden_dim))
batch_size, num_patches_height, num_patches_width, hidden_dim = query_feature_map.shape
query_image_feats = torch.reshape(query_feature_map, (batch_size, num_patches_height * num_patches_width, hidden_dim))
# Select using hf method
query_embeds2, box_indices, pred_boxes = model.embed_image_query(
query_image_features=query_image_feats,
query_feature_map=query_feature_map
)
# Select top object from prompt image * iou
objectnesses = torch.sigmoid(model.objectness_predictor(query_image_feats))
_, source_class_embeddings = model.class_predictor(query_image_feats)
# identify the box that covers only the prompt image area excluding padding
pw, ph = prompt_image.size
max_side = max(pw, ph)
each_query_box = torch.tensor([[0, 0, pw/max_side, ph/max_side]], device=DEVICE)
pred_boxes_as_corners = center_to_corners_format(pred_boxes)
each_query_pred_boxes = pred_boxes_as_corners[0]
ious, _ = box_iou(each_query_box, each_query_pred_boxes)
comb_score = objectnesses * ious
top_obj_idx = torch.argmax(comb_score, dim=-1)
query_embeds = source_class_embeddings[0][top_obj_idx]
# Predict object boxes
target_pred_boxes = model.box_predictor(image_feats, feature_map)
# Predict for prompt: my method
(pred_logits, class_embeds) = model.class_predictor(image_feats=image_feats, query_embeds=query_embeds)
outputs = Owlv2ImageGuidedObjectDetectionOutput(
logits=pred_logits,
target_pred_boxes=target_pred_boxes,
)
# Post-process results
target_sizes = torch.tensor([target_image.size[::-1]])
result = processor.post_process_image_guided_detection(
outputs=outputs,
target_sizes=target_sizes,
threshold=conf_thresh,
nms_threshold=iou_thresh
)[0]
# prepare for supervision: add 0 label for all boxes
result['labels'] = torch.zeros(len(result['boxes']), dtype=torch.int64)
class_names = {0: "object"}
# annotate the target image
annotated_image_my = annotate_image(result, class_names, pad_to_square(target_image))
# Predict for prompt: hf method
(pred_logits, class_embeds) = model.class_predictor(image_feats=image_feats, query_embeds=query_embeds2)
# Predict object boxes
outputs = Owlv2ImageGuidedObjectDetectionOutput(
logits=pred_logits,
target_pred_boxes=target_pred_boxes,
)
# Post-process results
target_sizes = torch.tensor([target_image.size[::-1]])
result = processor.post_process_image_guided_detection(
outputs=outputs,
target_sizes=target_sizes,
threshold=conf_thresh,
nms_threshold=iou_thresh
)[0]
# prepare for supervision: add 0 label for all boxes
result['labels'] = torch.zeros(len(result['boxes']), dtype=torch.int64)
class_names = {0: "object"}
# annotate the target image
annotated_image_hf = annotate_image(result, class_names, pad_to_square(target_image))
# Render selected prompt embedding
query_pred_boxes = pred_boxes[0, [top_obj_idx, box_indices[0]]].unsqueeze(0)
query_logits = torch.reshape(objectnesses[0, [top_obj_idx, box_indices[0]]], (1, 2, 1))
query_outputs = Owlv2ImageGuidedObjectDetectionOutput(
logits=query_logits,
target_pred_boxes=query_pred_boxes,
)
query_result = processor.post_process_image_guided_detection(
outputs=query_outputs,
target_sizes=torch.tensor([prompt_image.size[::-1]]),
threshold=0.0,
nms_threshold=1.0
)[0]
query_result['labels'] = torch.Tensor([0, 1])
# Annotate the prompt image
query_class_names = {0: "my", 1: "hf"}
# annotate the prompt image
annotated_prompt_image = annotate_image(query_result, query_class_names, pad_to_square(prompt_image))
return annotated_image_my, annotated_image_hf, annotated_prompt_image
def annotate_image(result, class_names, image):
detections = sv.Detections.from_transformers(result, class_names)
resolution_wh = image.size
thickness = sv.calculate_optimal_line_thickness(resolution_wh=resolution_wh)
text_scale = sv.calculate_optimal_text_scale(resolution_wh=resolution_wh)
labels = [
f"{class_name} {confidence:.2f}"
for class_name, confidence
in zip(detections['class_name'], detections.confidence)
]
annotated_image = image.copy()
annotated_image = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX, thickness=thickness).annotate(
scene=annotated_image, detections=detections)
annotated_image = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX, text_scale=text_scale, smart_position=True).annotate(
scene=annotated_image, detections=detections, labels=labels)
return annotated_image
def pad_to_square(image, background_color=(128, 128, 128)):
width, height = image.size
max_side = max(width, height)
result = Image.new(image.mode, (max_side, max_side), background_color)
result.paste(image, (0, 0))
return result
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
target_image = gr.Image(type="pil", label="Target Image", visible=True, interactive=True)
detect_button = gr.Button(value="Detect Objects")
prompt_type = gr.Textbox(value='Visual', visible=False) # Default prompt type
with gr.Tab("Visual") as visual_tab:
prompt_image = gr.Image(type="pil", label="Prompt Image", visible=True, interactive=True)
with gr.Tab("Text") as text_tab:
texts = gr.Textbox(label="Input Texts", value='', placeholder='person,bus', visible=True, interactive=True)
model_id = gr.Dropdown(
label="Model",
choices=[
"google/owlv2-base-patch16-ensemble",
"google/owlv2-large-patch14-ensemble"
],
value="google/owlv2-base-patch16-ensemble",
)
conf_thresh = gr.Slider(
label="Confidence Threshold",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.25,
)
iou_thresh = gr.Slider(
label="NSM Threshold",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.70,
)
with gr.Column():
output_image_hf_gr = gr.Group()
with output_image_hf_gr:
gr.Markdown("### Annotated Image (HF default)")
output_image_hf = gr.Image(type="numpy", visible=True, show_label=False)
output_image_my_gr = gr.Group()
with output_image_my_gr:
gr.Markdown("### Annotated Image (Objectness Γ IoU variant)")
output_image_my = gr.Image(type="numpy", visible=True, show_label=False)
annotated_prompt_image_gr = gr.Group()
with annotated_prompt_image_gr:
gr.Markdown("### Prompt Image with Selected Embeddings and Objectness Score")
annotated_prompt_image = gr.Image(type="numpy", visible=True, show_label=False)
visual_tab.select(
fn=lambda: ("Visual", gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)),
inputs=None,
outputs=[prompt_type, prompt_image, output_image_my_gr, annotated_prompt_image_gr]
)
text_tab.select(
fn=lambda: ("Text", gr.update(value=None, visible=False), gr.update(visible=False), gr.update(visible=False)),
inputs=None,
outputs=[prompt_type, prompt_image, output_image_my_gr, annotated_prompt_image_gr]
)
def run_inference(prompt_image, target_image, texts, model_id, conf_thresh, iou_thresh, prompt_type):
# add text/built-in prompts
if prompt_type == "Text":
texts = [text.strip() for text in texts.split(',')]
prompts = {
"texts": texts
}
# add visual prompt
elif prompt_type == "Visual":
prompts = {
"images": prompt_image,
}
return inference(prompts, target_image, model_id, conf_thresh, iou_thresh, prompt_type)
detect_button.click(
fn=run_inference,
inputs=[prompt_image, target_image, texts, model_id, conf_thresh, iou_thresh, prompt_type],
outputs=[output_image_my, output_image_hf, annotated_prompt_image],
)
###################### Examples ##########################
image_examples_list = [[
"test-data/target1.jpg",
"test-data/prompt1.jpg",
"google/owlv2-base-patch16-ensemble",
0.9,
0.3,
],
[
"test-data/target2.jpg",
"test-data/prompt2.jpg",
"google/owlv2-base-patch16-ensemble",
0.9,
0.3,
],
[
"test-data/target3.jpg",
"test-data/prompt3.jpg",
"google/owlv2-base-patch16-ensemble",
0.9,
0.3,
],
[
"test-data/target4.jpg",
"test-data/prompt4.jpg",
"google/owlv2-base-patch16-ensemble",
0.9,
0.3,
],
[
"test-data/target5.jpg",
"test-data/prompt5.jpg",
"google/owlv2-base-patch16-ensemble",
0.9,
0.3,
],
[
"test-data/target6.jpg",
"test-data/prompt6.jpg",
"google/owlv2-base-patch16-ensemble",
0.9,
0.3,
]
]
text_examples = gr.Examples(
examples=[[
"test-data/target1.jpg",
"logo",
"google/owlv2-base-patch16-ensemble",
0.3],
[
"test-data/target2.jpg",
"cat,remote",
"google/owlv2-base-patch16-ensemble",
0.3],
[
"test-data/target3.jpg",
"frog,spider,lizard",
"google/owlv2-base-patch16-ensemble",
0.3],
[
"test-data/target4.jpg",
"cat",
"google/owlv2-base-patch16-ensemble",
0.3
],
[
"test-data/target5.jpg",
"lemon,straw",
"google/owlv2-base-patch16-ensemble",
0.3
],
[
"test-data/target6.jpg",
"beer logo",
"google/owlv2-base-patch16-ensemble",
0.3
]
],
inputs=[target_image, texts, model_id, conf_thresh],
visible=False, cache_examples=False, label="Text Prompt Examples")
image_examples = gr.Examples(
examples=image_examples_list,
inputs=[target_image, prompt_image, model_id, conf_thresh, iou_thresh],
visible=True, cache_examples=False, label="Box Visual Prompt Examples")
# Examples update
def update_text_examples():
return gr.Dataset(visible=True), gr.Dataset(visible=False), gr.update(visible=False)
def update_visual_examples():
return gr.Dataset(visible=False), gr.Dataset(visible=True), gr.update(visible=True)
text_tab.select(
fn=update_text_examples,
inputs=None,
outputs=[text_examples.dataset, image_examples.dataset, iou_thresh]
)
visual_tab.select(
fn=update_visual_examples,
inputs=None,
outputs=[text_examples.dataset, image_examples.dataset, iou_thresh]
)
return target_image, prompt_image, model_id, conf_thresh, iou_thresh, image_examples_list
gradio_app = gr.Blocks()
with gradio_app:
gr.HTML(
"""
<h1 style='text-align: center'>OWLv2: Zero-shot detection with visual prompt π</h1>
""")
gr.Markdown("""
This demo showcases the OWLv2 model's ability to perform zero-shot object detection using visual and text prompts.
You can either provide a text prompt or an image as a visual prompt to detect objects in the target image.
Additionally, it compares different approaches for selecting a query embedding from a visual prompt. The method used in Hugging Face's `transformers` by default often underperforms because of how the visual prompt embedding is selected (see README.md for more details).
""")
with gr.Row():
with gr.Column():
# Create a list of all UI components
ui_components = app()
# Unpack the components
target_image, prompt_image, model_id, conf_thresh, iou_thresh, image_examples_list = ui_components
gradio_app.load(
fn=lambda: image_examples_list[1],
outputs=[target_image, prompt_image, model_id, conf_thresh, iou_thresh]
)
gradio_app.launch(allowed_paths=["figures"])
|