Spaces:
Runtime error
Runtime error
Remove Gradio, switch to FastAPI implementation
Browse files
README.md
CHANGED
@@ -3,9 +3,56 @@ title: LLaMA 7B Server
|
|
3 |
emoji: 🤖
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
|
|
3 |
emoji: 🤖
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
6 |
+
# LLaMA 7B Server
|
7 |
+
|
8 |
+
A FastAPI-based server for interacting with the LLaMA 7B model.
|
9 |
+
|
10 |
+
## Features
|
11 |
+
|
12 |
+
- [x] Text generation
|
13 |
+
- [x] Model parameters configuration
|
14 |
+
- [x] REST API interface
|
15 |
+
|
16 |
+
## API Usage
|
17 |
+
|
18 |
+
Make a POST request to `/generate` with the following JSON body:
|
19 |
+
|
20 |
+
```json
|
21 |
+
{
|
22 |
+
"prompt": "your prompt here",
|
23 |
+
"max_length": 2048,
|
24 |
+
"num_beams": 3,
|
25 |
+
"early_stopping": true,
|
26 |
+
"no_repeat_ngram_size": 3
|
27 |
+
}
|
28 |
+
```
|
29 |
+
|
30 |
+
Example using curl:
|
31 |
+
|
32 |
+
```bash
|
33 |
+
curl -X POST http://localhost:7860/generate \
|
34 |
+
-H "Content-Type: application/json" \
|
35 |
+
-d '{"prompt": "Hello, how are you?"}'
|
36 |
+
```
|
37 |
+
|
38 |
+
Example using Python:
|
39 |
+
|
40 |
+
```python
|
41 |
+
import requests
|
42 |
+
|
43 |
+
url = "http://localhost:7860/generate"
|
44 |
+
data = {
|
45 |
+
"prompt": "Hello, how are you?",
|
46 |
+
"max_length": 2048,
|
47 |
+
"num_beams": 3,
|
48 |
+
"early_stopping": True,
|
49 |
+
"no_repeat_ngram_size": 3
|
50 |
+
}
|
51 |
+
|
52 |
+
response = requests.post(url, json=data)
|
53 |
+
result = response.json()
|
54 |
+
print(result["generated_text"]) # This will contain your generated text
|
55 |
+
```
|
56 |
pinned: false
|
57 |
---
|
58 |
|
app.py
CHANGED
@@ -18,33 +18,19 @@ class GenerationRequest(BaseModel):
|
|
18 |
early_stopping: bool = True
|
19 |
no_repeat_ngram_size: int = 3
|
20 |
|
21 |
-
|
22 |
-
|
|
|
23 |
outputs = model.generate(
|
24 |
**inputs,
|
25 |
-
max_length=max_length,
|
26 |
-
num_beams=num_beams,
|
27 |
-
early_stopping=early_stopping,
|
28 |
-
no_repeat_ngram_size=no_repeat_ngram_size,
|
29 |
eos_token_id=tokenizer.eos_token_id,
|
30 |
pad_token_id=tokenizer.pad_token_id,
|
31 |
)
|
32 |
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
33 |
-
return output_text
|
34 |
-
|
35 |
-
iface = gr.Interface(
|
36 |
-
fn=generate,
|
37 |
-
inputs=gr.Textbox(lines=10, label="Input Prompt"),
|
38 |
-
outputs=gr.Textbox(label="Generated Output"),
|
39 |
-
title="LLaMA 7B Server",
|
40 |
-
description="A web interface for interacting with the LLaMA 7B model.",
|
41 |
-
allow_flagging="never",
|
42 |
-
api_open=True
|
43 |
-
)
|
44 |
-
|
45 |
-
@app.post("/generate")
|
46 |
-
async def generate_text(request: GenerationRequest):
|
47 |
-
return {"generated_text": generate(**request.dict())}
|
48 |
return {"generated_text": output_text}
|
49 |
|
50 |
if __name__ == "__main__":
|
|
|
18 |
early_stopping: bool = True
|
19 |
no_repeat_ngram_size: int = 3
|
20 |
|
21 |
+
@app.post("/generate")
|
22 |
+
async def generate_text(request: GenerationRequest):
|
23 |
+
inputs = tokenizer(request.prompt, return_tensors="pt").to(device)
|
24 |
outputs = model.generate(
|
25 |
**inputs,
|
26 |
+
max_length=request.max_length,
|
27 |
+
num_beams=request.num_beams,
|
28 |
+
early_stopping=request.early_stopping,
|
29 |
+
no_repeat_ngram_size=request.no_repeat_ngram_size,
|
30 |
eos_token_id=tokenizer.eos_token_id,
|
31 |
pad_token_id=tokenizer.pad_token_id,
|
32 |
)
|
33 |
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
return {"generated_text": output_text}
|
35 |
|
36 |
if __name__ == "__main__":
|