Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,931 Bytes
7d5de5f 325d5f4 462cace 51075f9 462cace 325d5f4 462cace 3e8686f 51075f9 462cace 7d5de5f 51075f9 7d5de5f ad9f6fa 7d5de5f 47a907f 7d5de5f 47a907f 7d5de5f ad9f6fa dd2d342 d840c30 ad9f6fa 7d5de5f e70dd9f 7d5de5f 20e7c98 d840c30 7d5de5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import torch
from diffusers.pipelines import FluxPipeline
from OminiControl.src.flux.condition import Condition
from PIL import Image
import random
from OminiControl.src.flux.generate import generate, seed_everything
print("Loading model...")
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16
)
pipe = pipe.to("cuda")
pipe.unload_lora_weights()
pipe.load_lora_weights(
"vzhizhi6611/OminiControlArt",
weight_name=f"v0/ghibli.safetensors",
adapter_name="ghibli",
)
pipe.load_lora_weights(
"vzhizhi6611/OminiControlArt",
weight_name=f"v0/irasutoya.safetensors",
adapter_name="irasutoya",
)
pipe.load_lora_weights(
"vzhizhi6611/OminiControlArt",
weight_name=f"v0/simpsons.safetensors",
adapter_name="simpsons",
)
pipe.load_lora_weights(
"vzhizhi6611/OminiControlArt",
weight_name=f"v0/snoopy.safetensors",
adapter_name="snoopy",
)
# ref: https://civitai.com/models/715472/flux-hayao-miyazaki-ghibli
pipe.load_lora_weights(
"./lora",
weight_name="MaoMu_Ghibli.safetensors",
adapter_name="MaoMu_Ghibli",
)
# ref: https://civitai.com/models/824739/flux-3d-animation-style-lora
pipe.load_lora_weights(
"./lora",
weight_name="3d_animation.safetensors",
adapter_name="3d_animation",
)
def generate_image(
image,
style,
inference_mode,
image_guidance,
image_ratio,
steps,
use_random_seed,
seed,
):
# Prepare Condition
def resize(img, factor=16):
w, h = img.size
new_w, new_h = w // factor * factor, h // factor * factor
padding_w, padding_h = (w - new_w) // 2, (h - new_h) // 2
img = img.crop((padding_w, padding_h, new_w + padding_w, new_h + padding_h))
return img
# Set Adapter
activate_adapter_name = {
"Studio Ghibli": "ghibli",
"Irasutoya Illustration": "irasutoya",
"The Simpsons": "simpsons",
"Snoopy": "snoopy",
"3D Animation": "3d_animation",
"MaoMu Ghibli": "MaoMu_Ghibli",
}[style]
pipe.set_adapters(activate_adapter_name)
original_width, original_height = image.size
factor = 512 / max(image.size)
image = resize(
image.resize(
(int(image.size[0] * factor), int(image.size[1] * factor)),
Image.LANCZOS,
)
)
delta = -image.size[0] // 16
condition = Condition(
"subject",
# activate_adapter_name,
image,
position_delta=(0, delta),
)
# Prepare seed
if use_random_seed:
seed = random.randint(0, 2**32 - 1)
seed_everything(seed)
# Image guidance scale
image_guidance = 1.0 if inference_mode == "Fast" else image_guidance
# Output size
if image_ratio == "Auto":
r = image.size[0] / image.size[1]
ratio = min([0.67, 1, 1.5], key=lambda x: abs(x - r))
else:
ratio = {
"Square(1:1)": 1,
"Portrait(2:3)": 0.67,
"Landscape(3:2)": 1.5,
}[image_ratio]
width, height = {
0.67: (640, 960),
1: (640, 640),
1.5: (960, 640),
}[ratio]
output_factor = max(width, height) / max(original_width, original_height)
width = int(original_width * output_factor)
height = int(original_height * output_factor)
print(
f"Image Ratio: {image_ratio}, Inference Mode: {inference_mode}, Image Guidance: {image_guidance}, Seed: {seed}, Steps: {steps}, Ratio: {ratio}, Size: {width}x{height}"
)
# Generate
result_img = generate(
pipe,
prompt="",
conditions=[condition],
num_inference_steps=steps,
width=width,
height=height,
image_guidance_scale=image_guidance,
default_lora=True,
max_sequence_length=32,
).images[0]
# result_img = image
result_img = result_img.resize((width, height), Image.LANCZOS)
return result_img
|