File size: 5,252 Bytes
44921ac
 
c50c9d2
 
44921ac
 
 
c50c9d2
19d19d4
44921ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19d19d4
44921ac
 
 
 
 
c50c9d2
44921ac
 
 
 
c50c9d2
44921ac
c50c9d2
 
44921ac
c50c9d2
 
 
44921ac
c50c9d2
 
 
 
 
44921ac
c50c9d2
 
44921ac
 
c50c9d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44921ac
c50c9d2
44921ac
c50c9d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44921ac
c50c9d2
44921ac
c50c9d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44921ac
 
c50c9d2
44921ac
c50c9d2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import pandas as pd
import streamlit as st

# from annotated_text import annotated_text
from annotated_text.util import get_annotated_html
from streamlit_annotation_tools import text_labeler

from constants import PREDICTION_ADDITION_INSTRUCTION
from evaluation_metrics import EVALUATION_METRICS
from predefined_example import EXAMPLES
from span_dataclass_converters import (
    get_highlight_spans_from_ner_spans,
    get_ner_spans_from_annotations,
)


@st.cache_resource
def get_examples_attributes(selected_example):
    "Return example attributes so that they are not refreshed on every interaction"
    return (
        selected_example.text,
        selected_example.gt_labels,
        selected_example.gt_spans,
        selected_example.predictions,
        selected_example.tags,
    )


if __name__ == "__main__":
    st.set_page_config(layout="wide")
    st.title("πŸ“ˆ NER Metrics Comparison βš–οΈ")

    st.write(
        "Evaluation for the NER task requires a ground truth and a prediction that will be evaluated. The ground truth is shown below, add predictions in the next section to compare the evaluation metrics."
    )
    explanation_tab, comparision_tab = st.tabs(["πŸ“™ Explanation", "βš–οΈ Comparision"])

    with explanation_tab:
        st.write("This is the place holder for explanation of all the metrics")

    with comparision_tab:
        # with st.container():
        st.subheader("Ground Truth & Predictions")  # , divider='rainbow')

        selected_example = st.selectbox(
            "Select an example text from the drop down below",
            [example for example in EXAMPLES],
            format_func=lambda ex: ex.text,
        )

        text, gt_labels, gt_spans, predictions, tags = get_examples_attributes(
            selected_example
        )

        # annotated_text(
        #     get_highlight_spans_from_ner_spans(
        #         get_ner_spans_from_annotations(gt_labels), text
        #     )
        # )

        annotated_predictions = [
            get_annotated_html(get_highlight_spans_from_ner_spans(ner_span, text))
            for ner_span in predictions
        ]
        predictions_df = pd.DataFrame(
            {
                # "ID": [f"Prediction_{index}" for index in range(len(predictions))],
                "Prediction": annotated_predictions,
                "ner_spans": predictions,
            },
            index=["Ground Truth"]
            + [f"Prediction_{index}" for index in range(len(predictions) - 1)],
        )

        # st.subheader("Predictions")  # , divider='rainbow')

        with st.expander("Click to Add Predictions"):
            st.subheader("Adding predictions")
            st.markdown(PREDICTION_ADDITION_INSTRUCTION)
            st.write(
                "Note: Only the spans of the selected label name is shown at a given instance.",
            )
            labels = text_labeler(text, gt_labels)
            st.json(labels, expanded=False)

            # if st.button("Add Prediction"):
            # labels = text_labeler(text)
            if st.button("Add!"):
                spans = get_ner_spans_from_annotations(labels)
                spans = sorted(spans, key=lambda span: span["start"])
                predictions.append(spans)
                annotated_predictions.append(
                    get_annotated_html(get_highlight_spans_from_ner_spans(spans, text))
                )
                predictions_df = pd.DataFrame(
                    {
                        # "ID": [f"Prediction_{index}" for index in range(len(predictions))],
                        "Prediction": annotated_predictions,
                        "ner_spans": predictions,
                    },
                    index=["Ground Truth"]
                    + [f"Prediction_{index}" for index in range(len(predictions) - 1)],
                )
                print("added")

        highlighted_predictions_df = predictions_df[["Prediction"]]
        st.write(
            highlighted_predictions_df.to_html(escape=False), unsafe_allow_html=True
        )
        st.divider()

        ### EVALUATION METRICS COMPARISION ###

        st.subheader("Evaluation Metrics Comparision")  # , divider='rainbow')
        st.markdown(
            "The different evaluation metrics we have for the NER task are\n"
            f"{''.join(['- '+evaluation_metric.name+'\n' for evaluation_metric in EVALUATION_METRICS])}"
        )

        with st.expander("View Predictions Details"):
            st.write(predictions_df.to_html(escape=False), unsafe_allow_html=True)

        if st.button("Get Metrics!"):
            for evaluation_metric in EVALUATION_METRICS:
                predictions_df[evaluation_metric.name] = predictions_df.ner_spans.apply(
                    lambda ner_spans: evaluation_metric.get_evaluation_metric(
                        # metric_type=evaluation_metric_type,
                        gt_ner_span=gt_spans,
                        pred_ner_span=ner_spans,
                        text=text,
                        tags=tags,
                    )
                )

            metrics_df = predictions_df.drop(["ner_spans"], axis=1)

            st.write(metrics_df.to_html(escape=False), unsafe_allow_html=True)