Spaces:
Runtime error
Runtime error
Commit
·
7b37b0e
1
Parent(s):
5649272
added model weights
Browse files- .gitattributes +1 -0
- .gitignore +4 -1
- app.py +6 -4
- data/dance_mapping.csv +48 -0
- main.py +0 -46
- dancer_net/dancer_net.py → models/residual.py +12 -16
- models/weights/ResidualDancer/config.json +24 -0
- models/weights/ResidualDancer/dancer_net.pt +3 -0
- train.py +28 -47
.gitattributes
CHANGED
|
@@ -1 +1,2 @@
|
|
| 1 |
*.wav filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 1 |
*.wav filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
.gitignore
CHANGED
|
@@ -1,5 +1,8 @@
|
|
| 1 |
__pycache__
|
| 2 |
.DS_Store
|
| 3 |
-
data
|
|
|
|
|
|
|
|
|
|
| 4 |
logs
|
| 5 |
gradio_cached_examples
|
|
|
|
| 1 |
__pycache__
|
| 2 |
.DS_Store
|
| 3 |
+
data/samples
|
| 4 |
+
data/samples-backup.zip
|
| 5 |
+
data/samples-backup.zip
|
| 6 |
+
data/songs.csv
|
| 7 |
logs
|
| 8 |
gradio_cached_examples
|
app.py
CHANGED
|
@@ -4,15 +4,17 @@ import numpy as np
|
|
| 4 |
import torch
|
| 5 |
from preprocessing.preprocess import AudioPipeline
|
| 6 |
from preprocessing.preprocess import AudioPipeline
|
| 7 |
-
from
|
| 8 |
import os
|
| 9 |
import json
|
| 10 |
from functools import cache
|
| 11 |
import pandas as pd
|
| 12 |
|
|
|
|
|
|
|
| 13 |
@cache
|
| 14 |
-
def get_model(device) -> tuple[
|
| 15 |
-
model_path = "
|
| 16 |
weights = os.path.join(model_path, "dancer_net.pt")
|
| 17 |
config_path = os.path.join(model_path, "config.json")
|
| 18 |
|
|
@@ -20,7 +22,7 @@ def get_model(device) -> tuple[ShortChunkCNN, np.ndarray]:
|
|
| 20 |
config = json.load(f)
|
| 21 |
labels = np.array(sorted(config["classes"]))
|
| 22 |
|
| 23 |
-
model =
|
| 24 |
model.load_state_dict(torch.load(weights))
|
| 25 |
model = model.to(device).eval()
|
| 26 |
return model, labels
|
|
|
|
| 4 |
import torch
|
| 5 |
from preprocessing.preprocess import AudioPipeline
|
| 6 |
from preprocessing.preprocess import AudioPipeline
|
| 7 |
+
from models.residual import ResidualDancer
|
| 8 |
import os
|
| 9 |
import json
|
| 10 |
from functools import cache
|
| 11 |
import pandas as pd
|
| 12 |
|
| 13 |
+
|
| 14 |
+
|
| 15 |
@cache
|
| 16 |
+
def get_model(device) -> tuple[ResidualDancer, np.ndarray]:
|
| 17 |
+
model_path = "models/weights/ResidualDancer"
|
| 18 |
weights = os.path.join(model_path, "dancer_net.pt")
|
| 19 |
config_path = os.path.join(model_path, "config.json")
|
| 20 |
|
|
|
|
| 22 |
config = json.load(f)
|
| 23 |
labels = np.array(sorted(config["classes"]))
|
| 24 |
|
| 25 |
+
model = ResidualDancer(n_classes=len(labels))
|
| 26 |
model.load_state_dict(torch.load(weights))
|
| 27 |
model = model.to(device).eval()
|
| 28 |
return model, labels
|
data/dance_mapping.csv
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
id,name
|
| 2 |
+
SWZ,Slow Waltz
|
| 3 |
+
CSW,Cross-step Waltz
|
| 4 |
+
CFT,Castle Foxtrot
|
| 5 |
+
SFT,Slow Foxtrot
|
| 6 |
+
TGO,Tango (Ballroom)
|
| 7 |
+
PBD,Peabody
|
| 8 |
+
VWZ,Viennese Waltz
|
| 9 |
+
QST,Quickstep
|
| 10 |
+
BOL,Bolero
|
| 11 |
+
CHA,Cha Cha
|
| 12 |
+
MBO,Mambo
|
| 13 |
+
JIV,Jive
|
| 14 |
+
RMB,Rumba
|
| 15 |
+
ECS,East Coast Swing
|
| 16 |
+
WCS,West Coast Swing
|
| 17 |
+
HST,Hustle
|
| 18 |
+
MRG,Merengue
|
| 19 |
+
PDL,Paso Doble
|
| 20 |
+
SMB,Samba
|
| 21 |
+
PLK,Polka
|
| 22 |
+
SLS,Salsa
|
| 23 |
+
BCH,Bachata
|
| 24 |
+
NC2,Night Club Two Step
|
| 25 |
+
C2S,Country Two Step
|
| 26 |
+
CMB,Cumbia
|
| 27 |
+
LHP,Lindy Hop
|
| 28 |
+
CST,Charleston
|
| 29 |
+
CSG,Carolina Shag
|
| 30 |
+
CLS,Collegiate Shag
|
| 31 |
+
ATN,Argentine Tango
|
| 32 |
+
TGV,Tango Vals
|
| 33 |
+
NTN,Neo Tango
|
| 34 |
+
MGA,Milonga
|
| 35 |
+
BSN,Bossa Nova
|
| 36 |
+
JSW,Jump Swing
|
| 37 |
+
BLU,Blues
|
| 38 |
+
MWT,Motown
|
| 39 |
+
BBA,Balboa
|
| 40 |
+
JAZ,Jazz
|
| 41 |
+
CNT,Contemporary
|
| 42 |
+
BLT,Ballet
|
| 43 |
+
BDW,Broadway
|
| 44 |
+
TAP,Tap
|
| 45 |
+
HHP,Hip-Hop
|
| 46 |
+
BWD,Bollywood
|
| 47 |
+
DSC,Disco
|
| 48 |
+
FST,Freestyle
|
main.py
DELETED
|
@@ -1,46 +0,0 @@
|
|
| 1 |
-
import torchaudio
|
| 2 |
-
from preprocessing.preprocess import AudioPipeline
|
| 3 |
-
from dancer_net.dancer_net import ShortChunkCNN
|
| 4 |
-
import torch
|
| 5 |
-
import numpy as np
|
| 6 |
-
import os
|
| 7 |
-
import json
|
| 8 |
-
|
| 9 |
-
if __name__ == "__main__":
|
| 10 |
-
|
| 11 |
-
audio_file = "data/samples/mzm.iqskzxzx.aac.p.m4a.wav"
|
| 12 |
-
seconds = 6
|
| 13 |
-
model_path = "logs/20221226-230930"
|
| 14 |
-
weights = os.path.join(model_path, "dancer_net.pt")
|
| 15 |
-
config_path = os.path.join(model_path, "config.json")
|
| 16 |
-
device = "mps"
|
| 17 |
-
threshold = 0.5
|
| 18 |
-
|
| 19 |
-
with open(config_path) as f:
|
| 20 |
-
config = json.load(f)
|
| 21 |
-
labels = np.array(sorted(config["classes"]))
|
| 22 |
-
|
| 23 |
-
audio_pipeline = AudioPipeline()
|
| 24 |
-
waveform, sample_rate = torchaudio.load(audio_file)
|
| 25 |
-
waveform = waveform[:, :seconds * sample_rate]
|
| 26 |
-
spectrogram = audio_pipeline(waveform)
|
| 27 |
-
spectrogram = spectrogram.unsqueeze(0).to(device)
|
| 28 |
-
|
| 29 |
-
model = ShortChunkCNN(n_class=len(labels))
|
| 30 |
-
model.load_state_dict(torch.load(weights))
|
| 31 |
-
model = model.to(device).eval()
|
| 32 |
-
|
| 33 |
-
with torch.no_grad():
|
| 34 |
-
results = model(spectrogram)
|
| 35 |
-
results = results.squeeze(0).detach().cpu().numpy()
|
| 36 |
-
results = results > threshold
|
| 37 |
-
results = labels[results]
|
| 38 |
-
print(results)
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dancer_net/dancer_net.py → models/residual.py
RENAMED
|
@@ -1,16 +1,12 @@
|
|
| 1 |
-
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
import torch.nn.functional as F
|
| 4 |
-
from torchaudio import transforms as taT, functional as taF
|
| 5 |
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
DEVICE = "mps"
|
| 9 |
-
class ShortChunkCNN(nn.Module):
|
| 10 |
def __init__(self,
|
| 11 |
n_channels=128,
|
| 12 |
-
|
| 13 |
-
n_class=50):
|
| 14 |
super().__init__()
|
| 15 |
|
| 16 |
# Spectrogram
|
|
@@ -18,19 +14,19 @@ class ShortChunkCNN(nn.Module):
|
|
| 18 |
|
| 19 |
# CNN
|
| 20 |
self.res_layers = nn.Sequential(
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
)
|
| 29 |
|
| 30 |
# Dense
|
| 31 |
self.dense1 = nn.Linear(n_channels*4, n_channels*4)
|
| 32 |
self.bn = nn.BatchNorm1d(n_channels*4)
|
| 33 |
-
self.dense2 = nn.Linear(n_channels*4,
|
| 34 |
self.dropout = nn.Dropout(0.3)
|
| 35 |
|
| 36 |
def forward(self, x):
|
|
@@ -56,7 +52,7 @@ class ShortChunkCNN(nn.Module):
|
|
| 56 |
return x
|
| 57 |
|
| 58 |
|
| 59 |
-
class
|
| 60 |
def __init__(self, input_channels, output_channels, shape=3, stride=2):
|
| 61 |
super().__init__()
|
| 62 |
# convolution
|
|
|
|
|
|
|
| 1 |
import torch.nn as nn
|
| 2 |
import torch.nn.functional as F
|
|
|
|
| 3 |
|
| 4 |
+
# Architecture based on: https://github.com/minzwon/sota-music-tagging-models/blob/36aa13b7205ff156cf4dcab60fd69957da453151/training/model.py
|
| 5 |
|
| 6 |
+
class ResidualDancer(nn.Module):
|
|
|
|
|
|
|
| 7 |
def __init__(self,
|
| 8 |
n_channels=128,
|
| 9 |
+
n_classes=50):
|
|
|
|
| 10 |
super().__init__()
|
| 11 |
|
| 12 |
# Spectrogram
|
|
|
|
| 14 |
|
| 15 |
# CNN
|
| 16 |
self.res_layers = nn.Sequential(
|
| 17 |
+
ResBlock(1, n_channels, stride=2),
|
| 18 |
+
ResBlock(n_channels, n_channels, stride=2),
|
| 19 |
+
ResBlock(n_channels, n_channels*2, stride=2),
|
| 20 |
+
ResBlock(n_channels*2, n_channels*2, stride=2),
|
| 21 |
+
ResBlock(n_channels*2, n_channels*2, stride=2),
|
| 22 |
+
ResBlock(n_channels*2, n_channels*2, stride=2),
|
| 23 |
+
ResBlock(n_channels*2, n_channels*4, stride=2)
|
| 24 |
)
|
| 25 |
|
| 26 |
# Dense
|
| 27 |
self.dense1 = nn.Linear(n_channels*4, n_channels*4)
|
| 28 |
self.bn = nn.BatchNorm1d(n_channels*4)
|
| 29 |
+
self.dense2 = nn.Linear(n_channels*4, n_classes)
|
| 30 |
self.dropout = nn.Dropout(0.3)
|
| 31 |
|
| 32 |
def forward(self, x):
|
|
|
|
| 52 |
return x
|
| 53 |
|
| 54 |
|
| 55 |
+
class ResBlock(nn.Module):
|
| 56 |
def __init__(self, input_channels, output_channels, shape=3, stride=2):
|
| 57 |
super().__init__()
|
| 58 |
# convolution
|
models/weights/ResidualDancer/config.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"classes": [
|
| 3 |
+
"ATN",
|
| 4 |
+
"BBA",
|
| 5 |
+
"BCH",
|
| 6 |
+
"BLU",
|
| 7 |
+
"CHA",
|
| 8 |
+
"CMB",
|
| 9 |
+
"CSG",
|
| 10 |
+
"ECS",
|
| 11 |
+
"HST",
|
| 12 |
+
"JIV",
|
| 13 |
+
"LHP",
|
| 14 |
+
"QST",
|
| 15 |
+
"RMB",
|
| 16 |
+
"SFT",
|
| 17 |
+
"SLS",
|
| 18 |
+
"SMB",
|
| 19 |
+
"SWZ",
|
| 20 |
+
"TGO",
|
| 21 |
+
"VWZ",
|
| 22 |
+
"WCS"
|
| 23 |
+
]
|
| 24 |
+
}
|
models/weights/ResidualDancer/dancer_net.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1888558eed82a5d99ac1dab55969a9ea36455d11a9370355d1f2b984598d30ff
|
| 3 |
+
size 48453416
|
train.py
CHANGED
|
@@ -13,10 +13,30 @@ from sklearn.model_selection import KFold
|
|
| 13 |
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score
|
| 14 |
from preprocessing.dataset import SongDataset
|
| 15 |
from preprocessing.preprocess import get_examples
|
| 16 |
-
from
|
| 17 |
|
| 18 |
DEVICE = "mps"
|
| 19 |
SEED = 42
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
def get_timestamp() -> str:
|
| 22 |
return datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S")
|
|
@@ -115,28 +135,8 @@ def train(
|
|
| 115 |
|
| 116 |
|
| 117 |
def cross_validation(seed=42, batch_size=64, k=5, device="mps"):
|
| 118 |
-
target_classes = ['ATN',
|
| 119 |
-
'BBA',
|
| 120 |
-
'BCH',
|
| 121 |
-
'BLU',
|
| 122 |
-
'CHA',
|
| 123 |
-
'CMB',
|
| 124 |
-
'CSG',
|
| 125 |
-
'ECS',
|
| 126 |
-
'HST',
|
| 127 |
-
'JIV',
|
| 128 |
-
'LHP',
|
| 129 |
-
'QST',
|
| 130 |
-
'RMB',
|
| 131 |
-
'SFT',
|
| 132 |
-
'SLS',
|
| 133 |
-
'SMB',
|
| 134 |
-
'SWZ',
|
| 135 |
-
'TGO',
|
| 136 |
-
'VWZ',
|
| 137 |
-
'WCS']
|
| 138 |
df = pd.read_csv("data/songs.csv")
|
| 139 |
-
x,y = get_examples(df, "data/samples",class_list=
|
| 140 |
|
| 141 |
dataset = SongDataset(x,y)
|
| 142 |
splits=KFold(n_splits=k,shuffle=True,random_state=seed)
|
|
@@ -149,7 +149,7 @@ def cross_validation(seed=42, batch_size=64, k=5, device="mps"):
|
|
| 149 |
train_loader = DataLoader(dataset, batch_size=batch_size, sampler=train_sampler)
|
| 150 |
test_loader = DataLoader(dataset, batch_size=batch_size, sampler=test_sampler)
|
| 151 |
n_classes = len(y[0])
|
| 152 |
-
model =
|
| 153 |
model, _ = train(model,train_loader, epochs=2, device=device)
|
| 154 |
val_metrics = evaluate(model, test_loader, nn.BCELoss())
|
| 155 |
metrics.append(val_metrics)
|
|
@@ -164,28 +164,9 @@ def cross_validation(seed=42, batch_size=64, k=5, device="mps"):
|
|
| 164 |
|
| 165 |
|
| 166 |
def train_model():
|
| 167 |
-
|
| 168 |
-
'BBA',
|
| 169 |
-
'BCH',
|
| 170 |
-
'BLU',
|
| 171 |
-
'CHA',
|
| 172 |
-
'CMB',
|
| 173 |
-
'CSG',
|
| 174 |
-
'ECS',
|
| 175 |
-
'HST',
|
| 176 |
-
'JIV',
|
| 177 |
-
'LHP',
|
| 178 |
-
'QST',
|
| 179 |
-
'RMB',
|
| 180 |
-
'SFT',
|
| 181 |
-
'SLS',
|
| 182 |
-
'SMB',
|
| 183 |
-
'SWZ',
|
| 184 |
-
'TGO',
|
| 185 |
-
'VWZ',
|
| 186 |
-
'WCS']
|
| 187 |
df = pd.read_csv("data/songs.csv")
|
| 188 |
-
x,y = get_examples(df, "data/samples",class_list=
|
| 189 |
dataset = SongDataset(x,y)
|
| 190 |
train_count = int(len(dataset) * 0.9)
|
| 191 |
datasets = random_split(dataset, [train_count, len(dataset) - train_count], torch.Generator().manual_seed(SEED))
|
|
@@ -193,7 +174,7 @@ def train_model():
|
|
| 193 |
train_data, val_data = data_loaders
|
| 194 |
example_spec, example_label = dataset[0]
|
| 195 |
n_classes = len(example_label)
|
| 196 |
-
model =
|
| 197 |
model, metrics = train(model,train_data, val_data, epochs=3, device=DEVICE)
|
| 198 |
|
| 199 |
log_dir = os.path.join(
|
|
@@ -201,11 +182,11 @@ def train_model():
|
|
| 201 |
)
|
| 202 |
os.makedirs(log_dir, exist_ok=True)
|
| 203 |
|
| 204 |
-
torch.save(model.state_dict(), os.path.join(log_dir, "
|
| 205 |
metrics = pd.DataFrame(metrics)
|
| 206 |
metrics.to_csv(os.path.join(log_dir, "metrics.csv"))
|
| 207 |
config = {
|
| 208 |
-
"classes":
|
| 209 |
}
|
| 210 |
with open(os.path.join(log_dir, "config.json")) as f:
|
| 211 |
json.dump(config, f)
|
|
|
|
| 13 |
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score
|
| 14 |
from preprocessing.dataset import SongDataset
|
| 15 |
from preprocessing.preprocess import get_examples
|
| 16 |
+
from models.residual import ResidualDancer
|
| 17 |
|
| 18 |
DEVICE = "mps"
|
| 19 |
SEED = 42
|
| 20 |
+
TARGET_CLASSES = ['ATN',
|
| 21 |
+
'BBA',
|
| 22 |
+
'BCH',
|
| 23 |
+
'BLU',
|
| 24 |
+
'CHA',
|
| 25 |
+
'CMB',
|
| 26 |
+
'CSG',
|
| 27 |
+
'ECS',
|
| 28 |
+
'HST',
|
| 29 |
+
'JIV',
|
| 30 |
+
'LHP',
|
| 31 |
+
'QST',
|
| 32 |
+
'RMB',
|
| 33 |
+
'SFT',
|
| 34 |
+
'SLS',
|
| 35 |
+
'SMB',
|
| 36 |
+
'SWZ',
|
| 37 |
+
'TGO',
|
| 38 |
+
'VWZ',
|
| 39 |
+
'WCS']
|
| 40 |
|
| 41 |
def get_timestamp() -> str:
|
| 42 |
return datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S")
|
|
|
|
| 135 |
|
| 136 |
|
| 137 |
def cross_validation(seed=42, batch_size=64, k=5, device="mps"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
df = pd.read_csv("data/songs.csv")
|
| 139 |
+
x,y = get_examples(df, "data/samples",class_list=TARGET_CLASSES)
|
| 140 |
|
| 141 |
dataset = SongDataset(x,y)
|
| 142 |
splits=KFold(n_splits=k,shuffle=True,random_state=seed)
|
|
|
|
| 149 |
train_loader = DataLoader(dataset, batch_size=batch_size, sampler=train_sampler)
|
| 150 |
test_loader = DataLoader(dataset, batch_size=batch_size, sampler=test_sampler)
|
| 151 |
n_classes = len(y[0])
|
| 152 |
+
model = ResidualDancer(n_classes=n_classes).to(device)
|
| 153 |
model, _ = train(model,train_loader, epochs=2, device=device)
|
| 154 |
val_metrics = evaluate(model, test_loader, nn.BCELoss())
|
| 155 |
metrics.append(val_metrics)
|
|
|
|
| 164 |
|
| 165 |
|
| 166 |
def train_model():
|
| 167 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
df = pd.read_csv("data/songs.csv")
|
| 169 |
+
x,y = get_examples(df, "data/samples",class_list=TARGET_CLASSES)
|
| 170 |
dataset = SongDataset(x,y)
|
| 171 |
train_count = int(len(dataset) * 0.9)
|
| 172 |
datasets = random_split(dataset, [train_count, len(dataset) - train_count], torch.Generator().manual_seed(SEED))
|
|
|
|
| 174 |
train_data, val_data = data_loaders
|
| 175 |
example_spec, example_label = dataset[0]
|
| 176 |
n_classes = len(example_label)
|
| 177 |
+
model = ResidualDancer(n_classes=n_classes).to(DEVICE)
|
| 178 |
model, metrics = train(model,train_data, val_data, epochs=3, device=DEVICE)
|
| 179 |
|
| 180 |
log_dir = os.path.join(
|
|
|
|
| 182 |
)
|
| 183 |
os.makedirs(log_dir, exist_ok=True)
|
| 184 |
|
| 185 |
+
torch.save(model.state_dict(), os.path.join(log_dir, "residual_dancer.pt"))
|
| 186 |
metrics = pd.DataFrame(metrics)
|
| 187 |
metrics.to_csv(os.path.join(log_dir, "metrics.csv"))
|
| 188 |
config = {
|
| 189 |
+
"classes": TARGET_CLASSES
|
| 190 |
}
|
| 191 |
with open(os.path.join(log_dir, "config.json")) as f:
|
| 192 |
json.dump(config, f)
|