File size: 15,770 Bytes
f870ddf 49b2f3e fa758b4 f870ddf 49b2f3e fa758b4 f870ddf 49b2f3e f870ddf fa758b4 f870ddf 49b2f3e f870ddf 49b2f3e fa758b4 49b2f3e fa758b4 49b2f3e fa758b4 49b2f3e fa758b4 8d5faea fa758b4 49b2f3e fa758b4 49b2f3e fa758b4 49b2f3e fa758b4 49b2f3e fa758b4 49b2f3e fa758b4 49b2f3e fa758b4 49b2f3e f870ddf fa758b4 f870ddf 49b2f3e f870ddf 49b2f3e f870ddf fa758b4 f870ddf 49b2f3e fa758b4 f870ddf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
import json
import datetime
import re
import io
async def get_voices():
voices = await edge_tts.list_voices()
return {
f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v["ShortName"]
for v in voices
}
def format_time(milliseconds):
"""Convert milliseconds to SRT time format (HH:MM:SS,mmm)"""
# Ensure milliseconds is an integer
milliseconds = int(milliseconds)
seconds, milliseconds = divmod(milliseconds, 1000)
minutes, seconds = divmod(seconds, 60)
hours, minutes = divmod(minutes, 60)
return f"{hours:02d}:{minutes:02d}:{seconds:02d},{milliseconds:03d}"
def time_to_ms(time_str):
"""Convert SRT time format (HH:MM:SS,mmm) to milliseconds"""
hours, minutes, rest = time_str.split(':')
seconds, milliseconds = rest.split(',')
return int(hours) * 3600000 + int(minutes) * 60000 + int(seconds) * 1000 + int(milliseconds)
def parse_srt_content(content):
"""Parse SRT file content and extract text and timing data"""
lines = content.split('\n')
timing_data = []
text_only = []
i = 0
while i < len(lines):
if not lines[i].strip():
i += 1
continue
# Check if this is a subtitle number line
if lines[i].strip().isdigit():
subtitle_num = int(lines[i].strip())
i += 1
if i >= len(lines):
break
# Parse timestamp line
timestamp_match = re.search(r'(\d{2}:\d{2}:\d{2},\d{3})\s*-->\s*(\d{2}:\d{2}:\d{2},\d{3})', lines[i])
if timestamp_match:
start_time = timestamp_match.group(1)
end_time = timestamp_match.group(2)
# Convert to milliseconds
start_ms = time_to_ms(start_time)
end_ms = time_to_ms(end_time)
i += 1
subtitle_text = ""
# Collect all text lines until empty line or end of file
while i < len(lines) and lines[i].strip():
subtitle_text += lines[i] + " "
i += 1
subtitle_text = subtitle_text.strip()
text_only.append(subtitle_text)
timing_data.append({
'text': subtitle_text,
'start': start_ms,
'end': end_ms
})
else:
i += 1
return " ".join(text_only), timing_data
async def process_uploaded_file(file):
"""Process uploaded file and detect if it's SRT or plain text"""
if file is None:
return None, None, False, None
try:
file_path = file.name if hasattr(file, 'name') else file
file_extension = os.path.splitext(file_path)[1].lower()
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# Check if it's an SRT file
is_subtitle = False
timing_data = None
if file_extension == '.srt' or re.search(r'^\d+\s*\n\d{2}:\d{2}:\d{2},\d{3}\s*-->\s*\d{2}:\d{2}:\d{2},\d{3}', content, re.MULTILINE):
is_subtitle = True
text_content, timing_data = parse_srt_content(content)
# Return original content for display
return text_content, timing_data, is_subtitle, content
else:
# Treat as plain text
text_content = content
return text_content, timing_data, is_subtitle, content
except Exception as e:
return f"Error processing file: {str(e)}", None, False, None
async def update_text_from_file(file):
"""Callback function to update text area when file is uploaded"""
if file is None:
return "", None
text_content, timing_data, is_subtitle, original_content = await process_uploaded_file(file)
if original_content is not None:
# Return the original content to preserve formatting
return original_content, None
return "", gr.Warning("Failed to process the file")
async def text_to_speech(text, voice, rate, pitch, generate_subtitles=False, uploaded_file=None):
"""Convert text to speech, handling both direct text input and uploaded files"""
if not text.strip() and uploaded_file is None:
return None, None, "Please enter text or upload a file to convert."
if not voice:
return None, None, "Please select a voice."
# First, determine if the text is SRT format
is_srt_format = bool(re.search(r'^\d+\s*\n\d{2}:\d{2}:\d{2},\d{3}\s*-->\s*\d{2}:\d{2}:\d{2},\d{3}', text, re.MULTILINE))
# If the text is in SRT format, parse it directly
if is_srt_format:
text_content, timing_data = parse_srt_content(text)
is_subtitle = True
else:
# Process uploaded file if provided
timing_data = None
is_subtitle = False
if uploaded_file is not None:
file_text, file_timing_data, file_is_subtitle, _ = await process_uploaded_file(uploaded_file)
if isinstance(file_text, str) and file_text.strip():
if file_is_subtitle:
text = file_text
timing_data = file_timing_data
is_subtitle = file_is_subtitle
voice_short_name = voice.split(" - ")[0]
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
# Create temporary file for audio
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
audio_path = tmp_file.name
subtitle_path = None
# Handle SRT-formatted text or subtitle files differently for audio generation
if is_srt_format or (is_subtitle and timing_data):
# Create separate audio files for each subtitle entry and then combine them
with tempfile.TemporaryDirectory() as temp_dir:
audio_segments = []
max_end_time = 0
# If we don't have timing data but have SRT format text, parse it
if not timing_data and is_srt_format:
_, timing_data = parse_srt_content(text)
# Process each subtitle entry separately
for i, entry in enumerate(timing_data):
segment_text = entry['text']
start_time = entry['start']
end_time = entry['end']
max_end_time = max(max_end_time, end_time)
# Create temporary file for this segment
segment_file = os.path.join(temp_dir, f"segment_{i}.mp3")
# Generate audio for this segment
communicate = edge_tts.Communicate(segment_text, voice_short_name, rate=rate_str, pitch=pitch_str)
await communicate.save(segment_file)
audio_segments.append({
'file': segment_file,
'start': start_time,
'end': end_time,
'text': segment_text
})
# Combine audio segments with proper timing
import wave
import audioop
from pydub import AudioSegment
# Initialize final audio
final_audio = AudioSegment.silent(duration=max_end_time + 1000) # Add 1 second buffer
# Add each segment at its proper time
for segment in audio_segments:
segment_audio = AudioSegment.from_file(segment['file'])
final_audio = final_audio.overlay(segment_audio, position=segment['start'])
# Export the combined audio
final_audio.export(audio_path, format="mp3")
# Generate subtitles if requested
if generate_subtitles:
with tempfile.NamedTemporaryFile(delete=False, suffix=".srt") as srt_file:
subtitle_path = srt_file.name
with open(subtitle_path, "w", encoding="utf-8") as f:
for i, entry in enumerate(timing_data):
f.write(f"{i+1}\n")
f.write(f"{format_time(entry['start'])} --> {format_time(entry['end'])}\n")
f.write(f"{entry['text']}\n\n")
else:
# Use the existing approach for regular text
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
if generate_subtitles:
with tempfile.NamedTemporaryFile(delete=False, suffix=".srt") as srt_file:
subtitle_path = srt_file.name
# Generate audio and collect word boundary data
async def process_audio():
word_boundaries = []
async for chunk in communicate.stream():
if chunk["type"] == "audio":
with open(audio_path, "ab") as audio_file:
audio_file.write(chunk["data"])
elif chunk["type"] == "WordBoundary":
word_boundaries.append(chunk)
return word_boundaries
word_boundaries = await process_audio()
# Group words into sensible phrases/sentences for subtitles
phrases = []
current_phrase = []
current_text = ""
phrase_start = 0
for i, boundary in enumerate(word_boundaries):
word = boundary["text"]
start_time = boundary["offset"] / 10000
duration = boundary["duration"] / 10000
end_time = start_time + duration
if not current_phrase:
phrase_start = start_time
current_phrase.append(boundary)
if word in ['.', ',', '!', '?', ':', ';'] or word.startswith(('.', ',', '!', '?', ':', ';')):
current_text = current_text.rstrip() + word + " "
else:
current_text += word + " "
# Determine if we should end this phrase and start a new one
should_break = False
# Break on punctuation
if word.endswith(('.', '!', '?', ':', ';', ',')) or i == len(word_boundaries) - 1:
should_break = True
# Break after a certain number of words (4-5 is typical for subtitles)
elif len(current_phrase) >= 5:
should_break = True
# Break on long pause (more than 300ms between words)
elif i < len(word_boundaries) - 1:
next_start = word_boundaries[i + 1]["offset"] / 10000
if next_start - end_time > 300:
should_break = True
if should_break or i == len(word_boundaries) - 1:
if current_phrase:
last_boundary = current_phrase[-1]
phrase_end = (last_boundary["offset"] + last_boundary["duration"]) / 10000
phrases.append({
"text": current_text.strip(),
"start": phrase_start,
"end": phrase_end
})
current_phrase = []
current_text = ""
# Write phrases to SRT file
with open(subtitle_path, "w", encoding="utf-8") as srt_file:
for i, phrase in enumerate(phrases):
# Write SRT entry
srt_file.write(f"{i+1}\n")
srt_file.write(f"{format_time(phrase['start'])} --> {format_time(phrase['end'])}\n")
srt_file.write(f"{phrase['text']}\n\n")
return audio_path, subtitle_path, None
async def tts_interface(text, voice, rate, pitch, generate_subtitles, uploaded_file=None):
audio, subtitle, warning = await text_to_speech(text, voice, rate, pitch, generate_subtitles, uploaded_file)
if warning:
return audio, subtitle, gr.Warning(warning)
return audio, subtitle, None
async def create_demo():
voices = await get_voices()
description = """
Convert text to speech using Microsoft Edge TTS. Adjust speech rate and pitch: 0 is default, positive values increase, negative values decrease.
You can also generate subtitle files (.srt) along with the audio.
**Note:** Edge TTS is a cloud-based service and requires an active internet connection."""
features = """
## ✨ Latest Features
- **SRT Subtitle Support**: Upload SRT files or input SRT format text to generate perfectly synchronized speech
- **SRT Generation**: Create subtitle files alongside your audio for perfect timing
- **File Upload**: Easily upload TXT or SRT files for conversion
- **Smart Format Detection**: Automatically detects plain text or SRT subtitle format
"""
with gr.Blocks(title="Edge TTS Text-to-Speech", analytics_enabled=False) as demo:
gr.Markdown("# Edge TTS Text-to-Speech Converter")
gr.Markdown(description)
gr.Markdown(features)
with gr.Row():
with gr.Column(scale=3):
text_input = gr.Textbox(label="Input Text", lines=5, value="Hello, how are you doing!")
file_input = gr.File(label="Or upload a TXT/SRT file", file_types=[".txt", ".srt"])
with gr.Column(scale=2):
voice_dropdown = gr.Dropdown(
choices=[""] + list(voices.keys()),
label="Select Voice",
value=list(voices.keys())[0] if voices else "",
)
rate_slider = gr.Slider(
minimum=-50,
maximum=50,
value=0,
label="Speech Rate Adjustment (%)",
step=1,
)
pitch_slider = gr.Slider(
minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1
)
subtitle_checkbox = gr.Checkbox(label="Generate Subtitles (.srt)", value=False)
submit_btn = gr.Button("Convert to Speech", variant="primary")
warning_md = gr.Markdown(visible=False)
outputs = [
gr.Audio(label="Generated Audio", type="filepath"),
gr.File(label="Generated Subtitles"),
warning_md
]
# Handle file upload to update text
file_input.change(
fn=update_text_from_file,
inputs=[file_input],
outputs=[text_input, warning_md]
)
# Handle submit button
submit_btn.click(
fn=tts_interface,
api_name="predict",
inputs=[text_input, voice_dropdown, rate_slider, pitch_slider, subtitle_checkbox, file_input],
outputs=outputs
)
gr.Markdown("Experience the power of Edge TTS for text-to-speech conversion, and explore our advanced Text-to-Video Converter for even more creative possibilities!")
return demo
async def main():
demo = await create_demo()
demo.queue(default_concurrency_limit=50)
demo.launch(show_api=True, show_error=True)
if __name__ == "__main__":
asyncio.run(main())
|