File size: 15,770 Bytes
f870ddf
 
 
 
 
49b2f3e
 
fa758b4
 
f870ddf
 
 
 
 
 
 
 
 
 
49b2f3e
 
 
 
 
 
 
 
 
 
fa758b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f870ddf
49b2f3e
f870ddf
fa758b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f870ddf
 
 
49b2f3e
 
f870ddf
49b2f3e
 
 
fa758b4
 
 
 
 
 
 
49b2f3e
fa758b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49b2f3e
fa758b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49b2f3e
fa758b4
 
 
 
 
 
 
 
 
 
8d5faea
fa758b4
49b2f3e
fa758b4
 
 
 
 
49b2f3e
fa758b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49b2f3e
fa758b4
 
49b2f3e
fa758b4
 
49b2f3e
fa758b4
 
 
 
 
 
 
 
 
 
49b2f3e
fa758b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49b2f3e
 
f870ddf
 
fa758b4
 
f870ddf
49b2f3e
 
f870ddf
 
 
 
 
 
 
49b2f3e
f870ddf
 
 
fa758b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f870ddf
49b2f3e
fa758b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f870ddf
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
import json
import datetime
import re
import io


async def get_voices():
    voices = await edge_tts.list_voices()
    return {
        f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v["ShortName"]
        for v in voices
    }


def format_time(milliseconds):
    """Convert milliseconds to SRT time format (HH:MM:SS,mmm)"""
    # Ensure milliseconds is an integer
    milliseconds = int(milliseconds)
    seconds, milliseconds = divmod(milliseconds, 1000)
    minutes, seconds = divmod(seconds, 60)
    hours, minutes = divmod(minutes, 60)
    return f"{hours:02d}:{minutes:02d}:{seconds:02d},{milliseconds:03d}"


def time_to_ms(time_str):
    """Convert SRT time format (HH:MM:SS,mmm) to milliseconds"""
    hours, minutes, rest = time_str.split(':')
    seconds, milliseconds = rest.split(',')
    return int(hours) * 3600000 + int(minutes) * 60000 + int(seconds) * 1000 + int(milliseconds)


def parse_srt_content(content):
    """Parse SRT file content and extract text and timing data"""
    lines = content.split('\n')
    timing_data = []
    text_only = []
    
    i = 0
    while i < len(lines):
        if not lines[i].strip():
            i += 1
            continue
            
        # Check if this is a subtitle number line
        if lines[i].strip().isdigit():
            subtitle_num = int(lines[i].strip())
            i += 1
            if i >= len(lines):
                break
                
            # Parse timestamp line
            timestamp_match = re.search(r'(\d{2}:\d{2}:\d{2},\d{3})\s*-->\s*(\d{2}:\d{2}:\d{2},\d{3})', lines[i])
            if timestamp_match:
                start_time = timestamp_match.group(1)
                end_time = timestamp_match.group(2)
                
                # Convert to milliseconds
                start_ms = time_to_ms(start_time)
                end_ms = time_to_ms(end_time)
                
                i += 1
                subtitle_text = ""
                
                # Collect all text lines until empty line or end of file
                while i < len(lines) and lines[i].strip():
                    subtitle_text += lines[i] + " "
                    i += 1
                
                subtitle_text = subtitle_text.strip()
                text_only.append(subtitle_text)
                timing_data.append({
                    'text': subtitle_text,
                    'start': start_ms,
                    'end': end_ms
                })
        else:
            i += 1
    
    return " ".join(text_only), timing_data


async def process_uploaded_file(file):
    """Process uploaded file and detect if it's SRT or plain text"""
    if file is None:
        return None, None, False, None
    
    try:
        file_path = file.name if hasattr(file, 'name') else file
        file_extension = os.path.splitext(file_path)[1].lower()
        
        with open(file_path, 'r', encoding='utf-8') as f:
            content = f.read()
        
        # Check if it's an SRT file
        is_subtitle = False
        timing_data = None
        
        if file_extension == '.srt' or re.search(r'^\d+\s*\n\d{2}:\d{2}:\d{2},\d{3}\s*-->\s*\d{2}:\d{2}:\d{2},\d{3}', content, re.MULTILINE):
            is_subtitle = True
            text_content, timing_data = parse_srt_content(content)
            # Return original content for display
            return text_content, timing_data, is_subtitle, content
        else:
            # Treat as plain text
            text_content = content
        
        return text_content, timing_data, is_subtitle, content
    except Exception as e:
        return f"Error processing file: {str(e)}", None, False, None


async def update_text_from_file(file):
    """Callback function to update text area when file is uploaded"""
    if file is None:
        return "", None
    
    text_content, timing_data, is_subtitle, original_content = await process_uploaded_file(file)
    if original_content is not None:
        # Return the original content to preserve formatting
        return original_content, None
    return "", gr.Warning("Failed to process the file")


async def text_to_speech(text, voice, rate, pitch, generate_subtitles=False, uploaded_file=None):
    """Convert text to speech, handling both direct text input and uploaded files"""
    if not text.strip() and uploaded_file is None:
        return None, None, "Please enter text or upload a file to convert."
    if not voice:
        return None, None, "Please select a voice."

    # First, determine if the text is SRT format
    is_srt_format = bool(re.search(r'^\d+\s*\n\d{2}:\d{2}:\d{2},\d{3}\s*-->\s*\d{2}:\d{2}:\d{2},\d{3}', text, re.MULTILINE))
    
    # If the text is in SRT format, parse it directly
    if is_srt_format:
        text_content, timing_data = parse_srt_content(text)
        is_subtitle = True
    else:
        # Process uploaded file if provided
        timing_data = None
        is_subtitle = False
        
        if uploaded_file is not None:
            file_text, file_timing_data, file_is_subtitle, _ = await process_uploaded_file(uploaded_file)
            if isinstance(file_text, str) and file_text.strip():
                if file_is_subtitle:
                    text = file_text
                    timing_data = file_timing_data
                    is_subtitle = file_is_subtitle

    voice_short_name = voice.split(" - ")[0]
    rate_str = f"{rate:+d}%"
    pitch_str = f"{pitch:+d}Hz"
    
    # Create temporary file for audio
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
        audio_path = tmp_file.name
    
    subtitle_path = None
    
    # Handle SRT-formatted text or subtitle files differently for audio generation
    if is_srt_format or (is_subtitle and timing_data):
        # Create separate audio files for each subtitle entry and then combine them
        with tempfile.TemporaryDirectory() as temp_dir:
            audio_segments = []
            max_end_time = 0
            
            # If we don't have timing data but have SRT format text, parse it
            if not timing_data and is_srt_format:
                _, timing_data = parse_srt_content(text)
            
            # Process each subtitle entry separately
            for i, entry in enumerate(timing_data):
                segment_text = entry['text']
                start_time = entry['start']
                end_time = entry['end']
                max_end_time = max(max_end_time, end_time)
                
                # Create temporary file for this segment
                segment_file = os.path.join(temp_dir, f"segment_{i}.mp3")
                
                # Generate audio for this segment
                communicate = edge_tts.Communicate(segment_text, voice_short_name, rate=rate_str, pitch=pitch_str)
                await communicate.save(segment_file)
                
                audio_segments.append({
                    'file': segment_file,
                    'start': start_time,
                    'end': end_time,
                    'text': segment_text
                })
            
            # Combine audio segments with proper timing
            import wave
            import audioop
            from pydub import AudioSegment
            
            # Initialize final audio
            final_audio = AudioSegment.silent(duration=max_end_time + 1000)  # Add 1 second buffer
            
            # Add each segment at its proper time
            for segment in audio_segments:
                segment_audio = AudioSegment.from_file(segment['file'])
                final_audio = final_audio.overlay(segment_audio, position=segment['start'])
            
            # Export the combined audio
            final_audio.export(audio_path, format="mp3")
            
            # Generate subtitles if requested
            if generate_subtitles:
                with tempfile.NamedTemporaryFile(delete=False, suffix=".srt") as srt_file:
                    subtitle_path = srt_file.name
                    with open(subtitle_path, "w", encoding="utf-8") as f:
                        for i, entry in enumerate(timing_data):
                            f.write(f"{i+1}\n")
                            f.write(f"{format_time(entry['start'])} --> {format_time(entry['end'])}\n")
                            f.write(f"{entry['text']}\n\n")
    else:
        # Use the existing approach for regular text
        communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
        
        if generate_subtitles:
            with tempfile.NamedTemporaryFile(delete=False, suffix=".srt") as srt_file:
                subtitle_path = srt_file.name
                
            # Generate audio and collect word boundary data
            async def process_audio():
                word_boundaries = []
                async for chunk in communicate.stream():
                    if chunk["type"] == "audio":
                        with open(audio_path, "ab") as audio_file:
                            audio_file.write(chunk["data"])
                    elif chunk["type"] == "WordBoundary":
                        word_boundaries.append(chunk)
                return word_boundaries
            
            word_boundaries = await process_audio()
            
            # Group words into sensible phrases/sentences for subtitles
            phrases = []
            current_phrase = []
            current_text = ""
            phrase_start = 0
            
            for i, boundary in enumerate(word_boundaries):
                word = boundary["text"]
                start_time = boundary["offset"] / 10000
                duration = boundary["duration"] / 10000
                end_time = start_time + duration
                
                if not current_phrase:
                    phrase_start = start_time
                    
                current_phrase.append(boundary)
                
                if word in ['.', ',', '!', '?', ':', ';'] or word.startswith(('.', ',', '!', '?', ':', ';')):
                    current_text = current_text.rstrip() + word + " "
                else:
                    current_text += word + " "
                
                # Determine if we should end this phrase and start a new one
                should_break = False
                
                # Break on punctuation
                if word.endswith(('.', '!', '?', ':', ';', ',')) or i == len(word_boundaries) - 1:
                    should_break = True
                    
                # Break after a certain number of words (4-5 is typical for subtitles)
                elif len(current_phrase) >= 5:
                    should_break = True
                    
                # Break on long pause (more than 300ms between words)
                elif i < len(word_boundaries) - 1:
                    next_start = word_boundaries[i + 1]["offset"] / 10000
                    if next_start - end_time > 300:
                        should_break = True
            
                if should_break or i == len(word_boundaries) - 1:
                    if current_phrase:
                        last_boundary = current_phrase[-1]
                        phrase_end = (last_boundary["offset"] + last_boundary["duration"]) / 10000
                        phrases.append({
                            "text": current_text.strip(),
                            "start": phrase_start,
                            "end": phrase_end
                        })
                        current_phrase = []
                        current_text = ""
            
            # Write phrases to SRT file
            with open(subtitle_path, "w", encoding="utf-8") as srt_file:
                for i, phrase in enumerate(phrases):
                    # Write SRT entry
                    srt_file.write(f"{i+1}\n")
                    srt_file.write(f"{format_time(phrase['start'])} --> {format_time(phrase['end'])}\n")
                    srt_file.write(f"{phrase['text']}\n\n")
    
    return audio_path, subtitle_path, None


async def tts_interface(text, voice, rate, pitch, generate_subtitles, uploaded_file=None):
    audio, subtitle, warning = await text_to_speech(text, voice, rate, pitch, generate_subtitles, uploaded_file)
    if warning:
        return audio, subtitle, gr.Warning(warning)
    return audio, subtitle, None


async def create_demo():
    voices = await get_voices()

    description = """
    Convert text to speech using Microsoft Edge TTS. Adjust speech rate and pitch: 0 is default, positive values increase, negative values decrease.
    You can also generate subtitle files (.srt) along with the audio.
    
    **Note:** Edge TTS is a cloud-based service and requires an active internet connection."""

    features = """
    ## ✨ Latest Features
    - **SRT Subtitle Support**: Upload SRT files or input SRT format text to generate perfectly synchronized speech
    - **SRT Generation**: Create subtitle files alongside your audio for perfect timing
    - **File Upload**: Easily upload TXT or SRT files for conversion
    - **Smart Format Detection**: Automatically detects plain text or SRT subtitle format
    """

    with gr.Blocks(title="Edge TTS Text-to-Speech", analytics_enabled=False) as demo:
        gr.Markdown("# Edge TTS Text-to-Speech Converter")
        gr.Markdown(description)
        gr.Markdown(features)
        
        with gr.Row():
            with gr.Column(scale=3):
                text_input = gr.Textbox(label="Input Text", lines=5, value="Hello, how are you doing!")
                file_input = gr.File(label="Or upload a TXT/SRT file", file_types=[".txt", ".srt"])
            
            with gr.Column(scale=2):
                voice_dropdown = gr.Dropdown(
                    choices=[""] + list(voices.keys()),
                    label="Select Voice",
                    value=list(voices.keys())[0] if voices else "",
                )
                rate_slider = gr.Slider(
                    minimum=-50,
                    maximum=50,
                    value=0,
                    label="Speech Rate Adjustment (%)",
                    step=1,
                )
                pitch_slider = gr.Slider(
                    minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1
                )
                subtitle_checkbox = gr.Checkbox(label="Generate Subtitles (.srt)", value=False)
        
        submit_btn = gr.Button("Convert to Speech", variant="primary")
        warning_md = gr.Markdown(visible=False)
        
        outputs = [
            gr.Audio(label="Generated Audio", type="filepath"),
            gr.File(label="Generated Subtitles"),
            warning_md
        ]
        
        # Handle file upload to update text
        file_input.change(
            fn=update_text_from_file,
            inputs=[file_input],
            outputs=[text_input, warning_md]
        )
        
        # Handle submit button
        submit_btn.click(
            fn=tts_interface,
            api_name="predict",
            inputs=[text_input, voice_dropdown, rate_slider, pitch_slider, subtitle_checkbox, file_input],
            outputs=outputs
        )
        
        gr.Markdown("Experience the power of Edge TTS for text-to-speech conversion, and explore our advanced Text-to-Video Converter for even more creative possibilities!")
    
    return demo


async def main():
    demo = await create_demo()
    demo.queue(default_concurrency_limit=50)
    demo.launch(show_api=True, show_error=True)


if __name__ == "__main__":
    asyncio.run(main())