File size: 30,562 Bytes
f870ddf 49b2f3e fa758b4 f870ddf 49b2f3e fa758b4 f870ddf 49b2f3e f870ddf fa758b4 f870ddf 49b2f3e f870ddf 49b2f3e fa758b4 49b2f3e fa758b4 49b2f3e fa758b4 16311fa fa758b4 49b2f3e fa758b4 8d5faea fa758b4 49b2f3e fa758b4 49b2f3e fa758b4 49b2f3e fa758b4 49b2f3e fa758b4 49b2f3e fa758b4 49b2f3e fa758b4 49b2f3e f870ddf fa758b4 f870ddf 49b2f3e f870ddf 4f2415a f870ddf 49b2f3e f870ddf fa758b4 4f2415a fa758b4 4f2415a fa758b4 4f2415a fa758b4 4f2415a 16311fa 4f2415a 16311fa 4f2415a fa758b4 4f2415a fa758b4 f870ddf 4f2415a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 |
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
import json
import datetime
import re
import io
async def get_voices():
voices = await edge_tts.list_voices()
return {
f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v["ShortName"]
for v in voices
}
def format_time(milliseconds):
"""Convert milliseconds to SRT time format (HH:MM:SS,mmm)"""
# Ensure milliseconds is an integer
milliseconds = int(milliseconds)
seconds, milliseconds = divmod(milliseconds, 1000)
minutes, seconds = divmod(seconds, 60)
hours, minutes = divmod(minutes, 60)
return f"{hours:02d}:{minutes:02d}:{seconds:02d},{milliseconds:03d}"
def time_to_ms(time_str):
"""Convert SRT time format (HH:MM:SS,mmm) to milliseconds"""
hours, minutes, rest = time_str.split(':')
seconds, milliseconds = rest.split(',')
return int(hours) * 3600000 + int(minutes) * 60000 + int(seconds) * 1000 + int(milliseconds)
def parse_srt_content(content):
"""Parse SRT file content and extract text and timing data"""
lines = content.split('\n')
timing_data = []
text_only = []
i = 0
while i < len(lines):
if not lines[i].strip():
i += 1
continue
# Check if this is a subtitle number line
if lines[i].strip().isdigit():
subtitle_num = int(lines[i].strip())
i += 1
if i >= len(lines):
break
# Parse timestamp line
timestamp_match = re.search(r'(\d{2}:\d{2}:\d{2},\d{3})\s*-->\s*(\d{2}:\d{2}:\d{2},\d{3})', lines[i])
if timestamp_match:
start_time = timestamp_match.group(1)
end_time = timestamp_match.group(2)
# Convert to milliseconds
start_ms = time_to_ms(start_time)
end_ms = time_to_ms(end_time)
i += 1
subtitle_text = ""
# Collect all text lines until empty line or end of file
while i < len(lines) and lines[i].strip():
subtitle_text += lines[i] + " "
i += 1
subtitle_text = subtitle_text.strip()
text_only.append(subtitle_text)
timing_data.append({
'text': subtitle_text,
'start': start_ms,
'end': end_ms
})
else:
i += 1
return " ".join(text_only), timing_data
async def process_uploaded_file(file):
"""Process uploaded file and detect if it's SRT or plain text"""
if file is None:
return None, None, False, None
try:
file_path = file.name if hasattr(file, 'name') else file
file_extension = os.path.splitext(file_path)[1].lower()
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# Check if it's an SRT file
is_subtitle = False
timing_data = None
if file_extension == '.srt' or re.search(r'^\d+\s*\n\d{2}:\d{2}:\d{2},\d{3}\s*-->\s*\d{2}:\d{2}:\d{2},\d{3}', content, re.MULTILINE):
is_subtitle = True
text_content, timing_data = parse_srt_content(content)
# Return original content for display
return text_content, timing_data, is_subtitle, content
else:
# Treat as plain text
text_content = content
return text_content, timing_data, is_subtitle, content
except Exception as e:
return f"Error processing file: {str(e)}", None, False, None
async def update_text_from_file(file):
"""Callback function to update text area when file is uploaded"""
if file is None:
return "", None
text_content, timing_data, is_subtitle, original_content = await process_uploaded_file(file)
if original_content is not None:
# Return the original content to preserve formatting
return original_content, None
return "", gr.Warning("Failed to process the file")
async def text_to_speech(text, voice, rate, pitch, generate_subtitles=False, uploaded_file=None):
"""Convert text to speech, handling both direct text input and uploaded files"""
if not text.strip() and uploaded_file is None:
return None, None, "Please enter text or upload a file to convert."
if not voice:
return None, None, "Please select a voice."
# First, determine if the text is SRT format
is_srt_format = bool(re.search(r'^\d+\s*\n\d{2}:\d{2}:\d{2},\d{3}\s*-->\s*\d{2}:\d{2}:\d{2},\d{3}', text, re.MULTILINE))
# If the text is in SRT format, parse it directly
if is_srt_format:
text_content, timing_data = parse_srt_content(text)
is_subtitle = True
else:
# Process uploaded file if provided
timing_data = None
is_subtitle = False
if uploaded_file is not None:
file_text, file_timing_data, file_is_subtitle, _ = await process_uploaded_file(uploaded_file)
if isinstance(file_text, str) and file_text.strip():
if file_is_subtitle:
text = file_text
timing_data = file_timing_data
is_subtitle = file_is_subtitle
voice_short_name = voice.split(" - ")[0]
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
# Create temporary file for audio
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
audio_path = tmp_file.name
subtitle_path = None
# Handle SRT-formatted text or subtitle files differently for audio generation
if is_srt_format or (is_subtitle and timing_data):
# Create separate audio files for each subtitle entry and then combine them
with tempfile.TemporaryDirectory() as temp_dir:
audio_segments = []
max_end_time = 0
# If we don't have timing data but have SRT format text, parse it
if not timing_data and is_srt_format:
_, timing_data = parse_srt_content(text)
# Process each subtitle entry separately
for i, entry in enumerate(timing_data):
segment_text = entry['text']
start_time = entry['start']
end_time = entry['end']
max_end_time = max(max_end_time, end_time)
# Create temporary file for this segment
segment_file = os.path.join(temp_dir, f"segment_{i}.mp3")
# Generate audio for this segment
communicate = edge_tts.Communicate(segment_text, voice_short_name, rate=rate_str, pitch=pitch_str)
await communicate.save(segment_file)
audio_segments.append({
'file': segment_file,
'start': start_time,
'end': end_time,
'text': segment_text
})
# Combine audio segments with proper timing
import wave
import audioop
from pydub import AudioSegment
# Initialize final audio
final_audio = AudioSegment.silent(duration=max_end_time + 1000) # Add 1 second buffer
# Add each segment at its proper time
for segment in audio_segments:
segment_audio = AudioSegment.from_file(segment['file'])
final_audio = final_audio.overlay(segment_audio, position=segment['start'])
# Export the combined audio
final_audio.export(audio_path, format="mp3")
# Generate subtitles if requested
if generate_subtitles:
with tempfile.NamedTemporaryFile(delete=False, suffix=".srt") as srt_file:
subtitle_path = srt_file.name
with open(subtitle_path, "w", encoding="utf-8") as f:
for i, entry in enumerate(timing_data):
f.write(f"{i+1}\n")
f.write(f"{format_time(entry['start'])} --> {format_time(entry['end'])}\n")
f.write(f"{entry['text']}\n\n")
else:
# Use the existing approach for regular text
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
if not generate_subtitles:
await communicate.save(audio_path)
if generate_subtitles:
with tempfile.NamedTemporaryFile(delete=False, suffix=".srt") as srt_file:
subtitle_path = srt_file.name
# Generate audio and collect word boundary data
async def process_audio():
word_boundaries = []
async for chunk in communicate.stream():
if chunk["type"] == "audio":
with open(audio_path, "ab") as audio_file:
audio_file.write(chunk["data"])
elif chunk["type"] == "WordBoundary":
word_boundaries.append(chunk)
return word_boundaries
word_boundaries = await process_audio()
# Group words into sensible phrases/sentences for subtitles
phrases = []
current_phrase = []
current_text = ""
phrase_start = 0
for i, boundary in enumerate(word_boundaries):
word = boundary["text"]
start_time = boundary["offset"] / 10000
duration = boundary["duration"] / 10000
end_time = start_time + duration
if not current_phrase:
phrase_start = start_time
current_phrase.append(boundary)
if word in ['.', ',', '!', '?', ':', ';'] or word.startswith(('.', ',', '!', '?', ':', ';')):
current_text = current_text.rstrip() + word + " "
else:
current_text += word + " "
# Determine if we should end this phrase and start a new one
should_break = False
# Break on punctuation
if word.endswith(('.', '!', '?', ':', ';', ',')) or i == len(word_boundaries) - 1:
should_break = True
# Break after a certain number of words (4-5 is typical for subtitles)
elif len(current_phrase) >= 5:
should_break = True
# Break on long pause (more than 300ms between words)
elif i < len(word_boundaries) - 1:
next_start = word_boundaries[i + 1]["offset"] / 10000
if next_start - end_time > 300:
should_break = True
if should_break or i == len(word_boundaries) - 1:
if current_phrase:
last_boundary = current_phrase[-1]
phrase_end = (last_boundary["offset"] + last_boundary["duration"]) / 10000
phrases.append({
"text": current_text.strip(),
"start": phrase_start,
"end": phrase_end
})
current_phrase = []
current_text = ""
# Write phrases to SRT file
with open(subtitle_path, "w", encoding="utf-8") as srt_file:
for i, phrase in enumerate(phrases):
# Write SRT entry
srt_file.write(f"{i+1}\n")
srt_file.write(f"{format_time(phrase['start'])} --> {format_time(phrase['end'])}\n")
srt_file.write(f"{phrase['text']}\n\n")
return audio_path, subtitle_path, None
async def tts_interface(text, voice, rate, pitch, generate_subtitles, uploaded_file=None):
audio, subtitle, warning = await text_to_speech(text, voice, rate, pitch, generate_subtitles, uploaded_file)
if warning:
return audio, subtitle, gr.Warning(warning)
return audio, subtitle, None
async def parse_multi_speaker_text(text):
"""Parse text containing speaker designations like 'Speaker1: Hello'"""
lines = text.split('\n')
speaker_segments = []
current_speaker = None
current_text = []
speaker_pattern = re.compile(r'^(Speaker\s*\d+|S\d+)\s*:\s*(.*)$', re.IGNORECASE)
for line in lines:
match = speaker_pattern.match(line.strip())
if match:
# If collecting text for a previous speaker, save it
if current_speaker and current_text:
speaker_segments.append({
'speaker': current_speaker,
'text': ' '.join(current_text).strip()
})
current_text = []
# Set the new current speaker and start collecting their text
current_speaker = match.group(1).strip()
if match.group(2).strip(): # If there's text after the speaker designation
current_text.append(match.group(2).strip())
elif line.strip() and current_speaker: # Continue with the current speaker
current_text.append(line.strip())
# Add the last speaker's text if any
if current_speaker and current_text:
speaker_segments.append({
'speaker': current_speaker,
'text': ' '.join(current_text).strip()
})
return speaker_segments
async def multi_speaker_tts(text, speaker_settings, generate_subtitles=False):
"""Process multi-speaker text and generate audio with different voices and settings"""
if not text.strip():
return None, None, "Please enter text to convert."
# Parse the multi-speaker text
speaker_segments = await parse_multi_speaker_text(text)
if not speaker_segments:
return None, None, "No valid speaker segments found in the text."
# Create temporary file for final audio
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
final_audio_path = tmp_file.name
subtitle_path = None
if generate_subtitles:
with tempfile.NamedTemporaryFile(delete=False, suffix=".srt") as srt_file:
subtitle_path = srt_file.name
# Process each speaker segment with the corresponding voice
with tempfile.TemporaryDirectory() as temp_dir:
audio_segments = []
subtitle_entries = []
current_offset = 0 # Track the time offset in milliseconds
for i, segment in enumerate(speaker_segments):
speaker = segment['speaker']
text = segment['text']
# Get the voice for this speaker
speaker_num = int(re.search(r'\d+', speaker).group()) if re.search(r'\d+', speaker) else 1
speaker_idx = min(speaker_num - 1, len(speaker_settings) - 1) # Ensure we don't go out of bounds
if speaker_idx < 0 or speaker_idx >= len(speaker_settings) or not speaker_settings[speaker_idx]['voice']:
return None, None, f"No voice selected for {speaker}."
# Get voice, rate, and pitch for this speaker
voice_short_name = speaker_settings[speaker_idx]['voice'].split(" - ")[0]
rate_str = f"{speaker_settings[speaker_idx]['rate']:+d}%"
pitch_str = f"{speaker_settings[speaker_idx]['pitch']:+d}Hz"
# Create temporary file for this segment
segment_file = os.path.join(temp_dir, f"segment_{i}.mp3")
# Generate audio for this segment with speaker-specific settings
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
# For subtitle generation, we need word boundaries
if generate_subtitles:
word_boundaries = []
async for chunk in communicate.stream():
if chunk["type"] == "audio":
with open(segment_file, "ab") as audio_file:
audio_file.write(chunk["data"])
elif chunk["type"] == "WordBoundary":
# Adjust offset to account for previous segments
adjusted_chunk = chunk.copy()
adjusted_chunk["offset"] += current_offset * 10000 # Convert ms to 100ns units
word_boundaries.append(adjusted_chunk)
# Process word boundaries for subtitles
if word_boundaries:
# Group words into phrases for subtitles
phrases = []
current_phrase = []
current_text = ""
phrase_start = 0
for j, boundary in enumerate(word_boundaries):
word = boundary["text"]
start_time = boundary["offset"] / 10000
duration = boundary["duration"] / 10000
end_time = start_time + duration
if not current_phrase:
phrase_start = start_time
current_phrase.append(boundary)
if word in ['.', ',', '!', '?', ':', ';'] or word.startswith(('.', ',', '!', '?', ':', ';')):
current_text = current_text.rstrip() + word + " "
else:
current_text += word + " "
# Determine if we should end this phrase
should_break = False
if word.endswith(('.', '!', '?', ':', ';', ',')) or j == len(word_boundaries) - 1:
should_break = True
elif len(current_phrase) >= 5:
should_break = True
elif j < len(word_boundaries) - 1:
next_start = word_boundaries[j + 1]["offset"] / 10000
if next_start - end_time > 300:
should_break = True
if should_break or j == len(word_boundaries) - 1:
if current_phrase:
last_boundary = current_phrase[-1]
phrase_end = (last_boundary["offset"] + last_boundary["duration"]) / 10000
phrases.append({
"text": f"[{speaker}] {current_text.strip()}",
"start": phrase_start,
"end": phrase_end
})
subtitle_entries.extend(phrases)
current_phrase = []
current_text = ""
else:
# Simple audio generation without subtitles
await communicate.save(segment_file)
# Get duration of the generated audio
from pydub import AudioSegment
audio = AudioSegment.from_file(segment_file)
duration = len(audio)
audio_segments.append({
'file': segment_file,
'duration': duration
})
# Update the current offset for the next segment
current_offset += duration
# Combine all audio segments
from pydub import AudioSegment
combined = AudioSegment.empty()
for segment in audio_segments:
audio = AudioSegment.from_file(segment['file'])
combined += audio
combined.export(final_audio_path, format="mp3")
# Generate subtitles file if requested
if generate_subtitles and subtitle_path:
with open(subtitle_path, "w", encoding="utf-8") as f:
for i, entry in enumerate(subtitle_entries):
f.write(f"{i+1}\n")
f.write(f"{format_time(entry['start'])} --> {format_time(entry['end'])}\n")
f.write(f"{entry['text']}\n\n")
return final_audio_path, subtitle_path, None
async def multi_speaker_interface(text, generate_subtitles, speaker1_voice, speaker1_rate, speaker1_pitch,
speaker2_voice, speaker2_rate, speaker2_pitch):
"""Interface function for multi-speaker TTS"""
# Create speaker settings from individual parameters
speaker_settings = []
# Add Speaker 1 if voice is selected
if speaker1_voice:
speaker_settings.append({
'voice': speaker1_voice,
'rate': speaker1_rate,
'pitch': speaker1_pitch
})
# Add Speaker 2 if voice is selected
if speaker2_voice:
speaker_settings.append({
'voice': speaker2_voice,
'rate': speaker2_rate,
'pitch': speaker2_pitch
})
if not speaker_settings:
return None, None, gr.Warning("Please select at least one speaker voice.")
audio, subtitle, warning = await multi_speaker_tts(text, speaker_settings, generate_subtitles)
if warning:
return audio, subtitle, gr.Warning(warning)
return audio, subtitle, None
async def create_demo():
voices = await get_voices()
description = """
Convert text to speech using Microsoft Edge TTS. Adjust speech rate and pitch: 0 is default, positive values increase, negative values decrease.
You can also generate subtitle files (.srt) along with the audio.
**Note:** Edge TTS is a cloud-based service and requires an active internet connection."""
features = """
## β¨ Latest Features
- **Single & Multi-Speaker Support**: Choose between single speaker or multi-speaker modes
- **SRT Subtitle Support**: Upload SRT files or input SRT format text to generate perfectly synchronized speech
- **SRT Generation**: Create subtitle files alongside your audio for perfect timing
- **File Upload**: Easily upload TXT or SRT files for conversion
- **Smart Format Detection**: Automatically detects plain text or SRT subtitle format
"""
with gr.Blocks(title="Edge TTS Text-to-Speech", analytics_enabled=False) as demo:
gr.Markdown("# Edge TTS Text-to-Speech Converter")
gr.Markdown(description)
gr.Markdown(features)
with gr.Tabs() as tabs:
with gr.Tab("Single Speaker"):
with gr.Row():
with gr.Column(scale=3):
text_input = gr.Textbox(label="Input Text", lines=5, value="Hello, how are you doing!")
file_input = gr.File(label="Or upload a TXT/SRT file", file_types=[".txt", ".srt"])
with gr.Column(scale=2):
voice_dropdown = gr.Dropdown(
choices=[""] + list(voices.keys()),
label="Select Voice",
value=list(voices.keys())[0] if voices else "",
)
rate_slider = gr.Slider(
minimum=-50,
maximum=50,
value=0,
label="Speech Rate Adjustment (%)",
step=1,
)
pitch_slider = gr.Slider(
minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1
)
subtitle_checkbox = gr.Checkbox(label="Generate Subtitles (.srt)", value=False)
gr.Markdown("""
**π Subtitle Timing Tip:**
When creating SRT files for continuous speech, avoid exact matching timestamps between segments.
**For smoother speech flow:**
```
1
00:00:00,112 --> 00:00:01,647
Hello how are you doing
2
00:00:01,617 --> 00:00:02,000
I'm fine
```
β
Create a small overlap (20-30ms) between segments to prevent pauses
β Avoid exact matching timestamps (where end time = next start time) except you want a pause
""")
submit_single_btn = gr.Button("Convert to Speech", variant="primary")
warning_single_md = gr.Markdown(visible=False)
single_outputs = [
gr.Audio(label="Generated Audio", type="filepath"),
gr.File(label="Generated Subtitles"),
warning_single_md
]
# Handle file upload to update text
file_input.change(
fn=update_text_from_file,
inputs=[file_input],
outputs=[text_input, warning_single_md]
)
# Handle submit button for single speaker
submit_single_btn.click(
fn=tts_interface,
api_name="predict",
inputs=[text_input, voice_dropdown, rate_slider, pitch_slider, subtitle_checkbox, file_input],
outputs=single_outputs
)
with gr.Tab("Multi Speaker"):
with gr.Column():
multi_text_input = gr.Textbox(
label="Multi-Speaker Text (Format: 'Speaker1: text' or 'S1: text')",
lines=8,
value="Speaker1: Hello, this is the first speaker.\nSpeaker2: And I'm the second speaker!"
)
multi_subtitle_checkbox = gr.Checkbox(label="Generate Subtitles (.srt)", value=False)
with gr.Row():
with gr.Column():
speaker1_voice = gr.Dropdown(
choices=[""] + list(voices.keys()),
label="Speaker 1 Voice",
value=list(voices.keys())[0] if voices else "",
)
speaker1_rate = gr.Slider(
minimum=-50,
maximum=50,
value=0,
label="Speaker 1 Rate (%)",
step=1,
)
speaker1_pitch = gr.Slider(
minimum=-20,
maximum=20,
value=0,
label="Speaker 1 Pitch (Hz)",
step=1,
)
with gr.Column():
speaker2_voice = gr.Dropdown(
choices=[""] + list(voices.keys()),
label="Speaker 2 Voice",
value=list(voices.keys())[10] if len(voices) > 10 else "",
)
speaker2_rate = gr.Slider(
minimum=-50,
maximum=50,
value=0,
label="Speaker 2 Rate (%)",
step=1,
)
speaker2_pitch = gr.Slider(
minimum=-20,
maximum=20,
value=0,
label="Speaker 2 Pitch (Hz)",
step=1,
)
submit_multi_btn = gr.Button("Convert Multi-Speaker to Speech", variant="primary")
warning_multi_md = gr.Markdown(visible=False)
multi_outputs = [
gr.Audio(label="Generated Audio", type="filepath"),
gr.File(label="Generated Subtitles"),
warning_multi_md
]
# Correctly pass the individual Gradio components to the click function
submit_multi_btn.click(
fn=multi_speaker_interface,
api_name="predict_multi",
inputs=[
multi_text_input,
multi_subtitle_checkbox,
speaker1_voice,
speaker1_rate,
speaker1_pitch,
speaker2_voice,
speaker2_rate,
speaker2_pitch
],
outputs=multi_outputs
)
gr.Markdown("Experience the power of Edge TTS for text-to-speech conversion with support for both single speaker and multi-speaker scenarios!")
return demo
async def main():
demo = await create_demo()
demo.queue(default_concurrency_limit=50)
demo.launch(show_api=True, show_error=True)
if __name__ == "__main__":
asyncio.run(main())
|