Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -105,7 +105,7 @@ class ModelWrapper: | |
| 105 | 
             
                        eval_images = get_x0_from_noise(noise, eval_images, alphas_cumprod, current_timesteps).to(self.DTYPE)
         | 
| 106 | 
             
                        print(eval_images.dtype)
         | 
| 107 | 
             
                        next_timestep = current_timesteps - step_interval 
         | 
| 108 | 
            -
                        noise = self.scheduler.add_noise(eval_images, torch.randn_like(eval_images), next_timestep).to( | 
| 109 | 
             
                        print(noise.dtype)
         | 
| 110 | 
             
                    if fast_vae_decode:
         | 
| 111 | 
             
                        eval_images = self.tiny_vae.decode(eval_images.to(self.tiny_vae_dtype) / self.tiny_vae.config.scaling_factor, return_dict=False)[0]
         | 
| @@ -210,6 +210,8 @@ def create_demo(): | |
| 210 | 
             
                conditioning_timestep = 999
         | 
| 211 | 
             
                num_step = 4
         | 
| 212 | 
             
                revision = None
         | 
|  | |
|  | |
| 213 |  | 
| 214 | 
             
                accelerator = Accelerator()
         | 
| 215 |  | 
|  | |
| 105 | 
             
                        eval_images = get_x0_from_noise(noise, eval_images, alphas_cumprod, current_timesteps).to(self.DTYPE)
         | 
| 106 | 
             
                        print(eval_images.dtype)
         | 
| 107 | 
             
                        next_timestep = current_timesteps - step_interval 
         | 
| 108 | 
            +
                        noise = self.scheduler.add_noise(eval_images, torch.randn_like(eval_images), next_timestep).to(DTYPE) 
         | 
| 109 | 
             
                        print(noise.dtype)
         | 
| 110 | 
             
                    if fast_vae_decode:
         | 
| 111 | 
             
                        eval_images = self.tiny_vae.decode(eval_images.to(self.tiny_vae_dtype) / self.tiny_vae.config.scaling_factor, return_dict=False)[0]
         | 
|  | |
| 210 | 
             
                conditioning_timestep = 999
         | 
| 211 | 
             
                num_step = 4
         | 
| 212 | 
             
                revision = None
         | 
| 213 | 
            +
                torch.backends.cuda.matmul.allow_tf32 = True
         | 
| 214 | 
            +
                torch.backends.cudnn.allow_tf32 = True 
         | 
| 215 |  | 
| 216 | 
             
                accelerator = Accelerator()
         | 
| 217 |  | 
