File size: 6,762 Bytes
dfbca8a
573a89c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a202ba5
 
573a89c
 
 
 
a202ba5
 
573a89c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a202ba5
 
 
 
 
 
573a89c
 
 
 
 
 
 
 
 
 
 
a202ba5
 
 
 
 
 
573a89c
 
 
 
 
 
 
dfbca8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
573a89c
dfbca8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
573a89c
dfbca8a
573a89c
dfbca8a
573a89c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfbca8a
573a89c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import plotly.graph_objects as go
import streamlit as st
import torch
import torch.nn.functional as F
from datasets import load_dataset
from pydantic import BaseModel
from rich.progress import track
from sklearn.metrics import roc_auc_score, roc_curve
from transformers import AutoModelForSequenceClassification, AutoTokenizer


class DatasetArgs(BaseModel):
    dataset_address: str
    train_dataset_range: int
    test_dataset_range: int


class LlamaGuardFineTuner:
    def __init__(self, streamlit_mode: bool = False):
        self.streamlit_mode = streamlit_mode

    def load_dataset(self, dataset_args: DatasetArgs):
        dataset = load_dataset(dataset_args.dataset_address)
        self.train_dataset = (
            dataset["train"]
            if dataset_args.train_dataset_range <= 0
            or dataset_args.train_dataset_range > len(dataset["train"])
            else dataset["train"].select(range(dataset_args.train_dataset_range))
        )
        self.test_dataset = (
            dataset["test"]
            if dataset_args.test_dataset_range <= 0
            or dataset_args.test_dataset_range > len(dataset["test"])
            else dataset["test"].select(range(dataset_args.test_dataset_range))
        )

    def load_model(self, model_name: str = "meta-llama/Prompt-Guard-86M"):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModelForSequenceClassification.from_pretrained(model_name).to(
            self.device
        )

    def show_dataset_sample(self):
        if self.streamlit_mode:
            st.markdown("### Train Dataset Sample")
            st.dataframe(self.train_dataset.to_pandas().head())
            st.markdown("### Test Dataset Sample")
            st.dataframe(self.test_dataset.to_pandas().head())

    def evaluate_batch(
        self,
        texts,
        batch_size: int = 32,
        positive_label: int = 2,
        temperature: float = 1.0,
        truncation: bool = True,
        max_length: int = 512,
    ) -> list[float]:
        self.model.eval()
        encoded_texts = self.tokenizer(
            texts,
            padding=True,
            truncation=truncation,
            max_length=max_length,
            return_tensors="pt",
        )
        dataset = torch.utils.data.TensorDataset(
            encoded_texts["input_ids"], encoded_texts["attention_mask"]
        )
        data_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size)

        scores = []
        progress_bar = (
            st.progress(0, text="Evaluating") if self.streamlit_mode else None
        )
        for i, batch in track(
            enumerate(data_loader), description="Evaluating", total=len(data_loader)
        ):
            input_ids, attention_mask = [b.to(self.device) for b in batch]
            with torch.no_grad():
                logits = self.model(
                    input_ids=input_ids, attention_mask=attention_mask
                ).logits
            scaled_logits = logits / temperature
            probabilities = F.softmax(scaled_logits, dim=-1)
            positive_class_probabilities = (
                probabilities[:, positive_label].cpu().numpy()
            )
            scores.extend(positive_class_probabilities)
            if progress_bar:
                progress_percentage = (i + 1) * 100 // len(data_loader)
                progress_bar.progress(
                    progress_percentage,
                    text=f"Evaluating batch {i + 1}/{len(data_loader)}",
                )

        return scores

    def visualize_roc_curve(self, test_scores: list[float]):
        test_labels = [int(elt) for elt in self.test_dataset["label"]]
        fpr, tpr, _ = roc_curve(test_labels, test_scores)
        roc_auc = roc_auc_score(test_labels, test_scores)

        fig = go.Figure()
        fig.add_trace(
            go.Scatter(
                x=fpr,
                y=tpr,
                mode="lines",
                name=f"ROC curve (area = {roc_auc:.3f})",
                line=dict(color="darkorange", width=2),
            )
        )
        fig.add_trace(
            go.Scatter(
                x=[0, 1],
                y=[0, 1],
                mode="lines",
                name="Random Guess",
                line=dict(color="navy", width=2, dash="dash"),
            )
        )

        fig.update_layout(
            title="Receiver Operating Characteristic",
            xaxis_title="False Positive Rate",
            yaxis_title="True Positive Rate",
            xaxis=dict(range=[0.0, 1.0]),
            yaxis=dict(range=[0.0, 1.05]),
            legend=dict(x=0.8, y=0.2),
        )

        if self.streamlit_mode:
            st.plotly_chart(fig)
        else:
            fig.show()

    def visualize_score_distribution(self, scores: list[float]):
        test_labels = [int(elt) for elt in self.test_dataset["label"]]
        positive_scores = [scores[i] for i in range(500) if test_labels[i] == 1]
        negative_scores = [scores[i] for i in range(500) if test_labels[i] == 0]

        fig = go.Figure()

        # Plotting positive scores
        fig.add_trace(
            go.Histogram(
                x=positive_scores,
                histnorm="probability density",
                name="Positive",
                marker_color="darkblue",
                opacity=0.75,
            )
        )

        # Plotting negative scores
        fig.add_trace(
            go.Histogram(
                x=negative_scores,
                histnorm="probability density",
                name="Negative",
                marker_color="darkred",
                opacity=0.75,
            )
        )

        # Updating layout
        fig.update_layout(
            title="Score Distribution for Positive and Negative Examples",
            xaxis_title="Score",
            yaxis_title="Density",
            barmode="overlay",
            legend_title="Scores",
        )

        # Display the plot
        if self.streamlit_mode:
            st.plotly_chart(fig)
        else:
            fig.show()

    def evaluate_model(
        self,
        batch_size: int = 32,
        positive_label: int = 2,
        temperature: float = 3.0,
        truncation: bool = True,
        max_length: int = 512,
    ):
        test_scores = self.evaluate_batch(
            self.test_dataset["text"],
            batch_size=batch_size,
            positive_label=positive_label,
            temperature=temperature,
            truncation=truncation,
            max_length=max_length,
        )
        self.visualize_roc_curve(test_scores)
        self.visualize_score_distribution(test_scores)
        return test_scores