Spaces:
Running
Running
| import matplotlib.pyplot as plt | |
| # from demo import Demo, read_input_image,read_input_image_test | |
| from evaluation.viz import plot_example_single | |
| from dataset.torch import unbatch_to_device | |
| import matplotlib.pyplot as plt | |
| from typing import Optional, Tuple | |
| import cv2 | |
| import torch | |
| import numpy as np | |
| import time | |
| from logger import logger | |
| from evaluation.run import resolve_checkpoint_path, pretrained_models | |
| from models.maplocnet import MapLocNet | |
| from models.voting import fuse_gps, argmax_xyr | |
| # from data.image import resize_image, pad_image, rectify_image | |
| from osm.raster import Canvas | |
| from utils.wrappers import Camera | |
| from utils.io import read_image | |
| from utils.geo import BoundaryBox, Projection | |
| from utils.exif import EXIF | |
| import requests | |
| from pathlib import Path | |
| from utils.exif import EXIF | |
| from dataset.image import resize_image, pad_image, rectify_image | |
| # from maploc.demo import Demo, read_input_image | |
| from dataset import UavMapDatasetModule | |
| import torchvision.transforms as tvf | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| from sklearn.decomposition import PCA | |
| from PIL import Image | |
| # import pyproj | |
| # Query OpenStreetMap for this area | |
| from osm.tiling import TileManager | |
| from utils.viz_localization import ( | |
| likelihood_overlay, | |
| plot_dense_rotations, | |
| add_circle_inset, | |
| ) | |
| # Show the inputs to the model: image and raster map | |
| from osm.viz import Colormap, plot_nodes | |
| from utils.viz_2d import plot_images | |
| from utils.viz_2d import features_to_RGB | |
| import random | |
| from geopy.distance import geodesic | |
| def vis_image_feature(F): | |
| def normalize(x): | |
| return x / np.linalg.norm(x, axis=-1, keepdims=True) | |
| # F=neural_map.numpy() | |
| F = F[:, 0:180, 0:180] | |
| flatten = [] | |
| c, h, w = F.shape | |
| print(F.shape) | |
| F = np.rollaxis(F, 0, 3) | |
| F_flat = F.reshape(-1, c) | |
| flatten.append(F_flat) | |
| flatten = normalize(flatten)[0] | |
| flatten = np.nan_to_num(flatten, nan=0) | |
| pca = PCA(n_components=3) | |
| print(flatten.shape) | |
| flatten = pca.fit_transform(flatten) | |
| flatten = (normalize(flatten) + 1) / 2 | |
| # h, w = F.shape[-2:] | |
| F_rgb, flatten = np.split(flatten, [h * w], axis=0) | |
| F_rgb = F_rgb.reshape((h, w, 3)) | |
| return F_rgb | |
| def distance(lat1, lon1, lat2, lon2): | |
| point1 = (lat1, lon1) | |
| point2 = (lat2, lon2) | |
| distance_km = geodesic(point1, point2).meters | |
| return distance_km | |
| # # 示例 | |
| # lat1, lon1 = 39.9, 116.4 # 北京的经纬度 | |
| # lat2, lon2 = 31.2, 121.5 # 上海的经纬度 | |
| # distance_km = distance(lat1, lon1, lat2, lon2) | |
| # print(distance_km) | |
| def show_result(map_vis_image, pre_uv, pre_yaw): | |
| # 创建一个和原始图片大小相同的灰色蒙版图像 | |
| gray_mask = np.zeros_like(map_vis_image) | |
| gray_mask.fill(128) # 填充灰色 | |
| # 将灰色蒙版图像与原始图像进行融合 | |
| image = cv2.addWeighted(map_vis_image, 1, gray_mask, 0, 0) | |
| # 绘制真实值 | |
| # 绘制预测值 | |
| u, v = pre_uv | |
| x1, y1 = int(u), int(v) # 替换为实际的起点坐标 | |
| angle = pre_yaw - 90 # 替换为实际的箭头角度 | |
| # 计算箭头的终点坐标 | |
| length = 20 | |
| x2 = int(x1 + length * np.cos(np.radians(angle))) | |
| y2 = int(y1 + length * np.sin(np.radians(angle))) | |
| # 在图像上画出箭头 | |
| cv2.arrowedLine(image, (x1, y1), (x2, y2), (0, 0, 0), 2, 5, 0, 0.3) | |
| # cv2.circle(image, (x1, y1), radius=2, color=(255, 0, 255), thickness=-1) | |
| return image | |
| def xyz_to_latlon(x, y, z): | |
| # 定义WGS84投影 | |
| wgs84 = pyproj.CRS('EPSG:4326') | |
| # 定义XYZ投影 | |
| xyz = pyproj.CRS(f'+proj=geocent +datum=WGS84 +units=m +no_defs') | |
| # 创建坐标转换器 | |
| transformer = pyproj.Transformer.from_crs(xyz, wgs84) | |
| # 转换坐标 | |
| lon, lat, _ = transformer.transform(x, y, z) | |
| return lat, lon | |
| class Demo: | |
| def __init__( | |
| self, | |
| experiment_or_path: Optional[str] = "OrienterNet_MGL", | |
| device=None, | |
| **kwargs | |
| ): | |
| if experiment_or_path in pretrained_models: | |
| experiment_or_path, _ = pretrained_models[experiment_or_path] | |
| path = resolve_checkpoint_path(experiment_or_path) | |
| ckpt = torch.load(path, map_location=(lambda storage, loc: storage)) | |
| config = ckpt["hyper_parameters"] | |
| config.model.update(kwargs) | |
| config.model.image_encoder.backbone.pretrained = False | |
| model = MapLocNet(config.model).eval() | |
| state = {k[len("model."):]: v for k, v in ckpt["state_dict"].items()} | |
| model.load_state_dict(state, strict=True) | |
| if device is None: | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model = model.to(device) | |
| self.model = model | |
| self.config = config | |
| self.device = device | |
| def prepare_data( | |
| self, | |
| image: np.ndarray, | |
| camera: Camera, | |
| canvas: Canvas, | |
| roll_pitch: Optional[Tuple[float]] = None, | |
| ): | |
| image = torch.from_numpy(image).permute(2, 0, 1).float().div_(255) | |
| return { | |
| 'map': torch.from_numpy(canvas.raster).long(), | |
| 'image': image, | |
| # 'roll_pitch_yaw':torch.tensor((0, 0, float(yaw))).float().unsqueeze(0), | |
| # 'pixels_per_meter':torch.tensor(float(pixel_per_meter)).float().unsqueeze(0), | |
| # "uv":torch.tensor([float(u), float(v)]).float().unsqueeze(0), | |
| } | |
| # return dict( | |
| # image=image, | |
| # map=torch.from_numpy(canvas.raster).long(), | |
| # camera=camera.float(), | |
| # valid=valid, | |
| # ) | |
| def localize(self, image: np.ndarray, camera: Camera, canvas: Canvas, **kwargs): | |
| data = self.prepare_data(image, camera, canvas, **kwargs) | |
| data_ = {k: v.to(self.device)[None] for k, v in data.items()} | |
| # data_np = {k: v.cpu().numpy()[None] for k, v in data.items()} | |
| # logger.info(data_) | |
| # np.save(data_np, 'data_.npy') | |
| start = time.time() | |
| with torch.no_grad(): | |
| pred = self.model(data_) | |
| end = time.time() | |
| xy_gps = canvas.bbox.center | |
| uv_gps = torch.from_numpy(canvas.to_uv(xy_gps)) | |
| lp_xyr = pred["log_probs"].squeeze(0) | |
| # tile_size = canvas.bbox.size.min() / 2 | |
| # sigma = tile_size - 20 # 20 meters margin | |
| # lp_xyr = fuse_gps( | |
| # lp_xyr, | |
| # uv_gps.to(lp_xyr), | |
| # self.config.model.pixel_per_meter, | |
| # sigma=sigma, | |
| # ) | |
| xyr = argmax_xyr(lp_xyr).cpu() | |
| prob = lp_xyr.exp().cpu() | |
| neural_map = pred["map"]["map_features"][0].squeeze(0).cpu() | |
| print('total time:', start - end) | |
| return xyr[:2], xyr[2], prob, neural_map, data["image"], data_, pred | |
| def load_test_data( | |
| root: Path, | |
| city: str, | |
| index: int, | |
| ): | |
| uav_image_path = root / city / 'uav' | |
| map_path = root / city / 'map' | |
| map_vis = root / city / 'map_vis' | |
| info_path = root / city / 'info.csv' | |
| osm_path = root / city / '{}.osm'.format(city) | |
| info = np.loadtxt(str(info_path), dtype=str, delimiter=",", skiprows=1) | |
| id, uav_name, map_name, \ | |
| uav_long, uav_lat, \ | |
| map_long, map_lat, \ | |
| tile_size_meters, pixel_per_meter, \ | |
| u, v, yaw, dis = info[index] | |
| print(info[index]) | |
| uav_image_rgb = cv2.imread(str(uav_image_path / uav_name)) | |
| uav_image_rgb = cv2.cvtColor(uav_image_rgb, cv2.COLOR_BGR2RGB) | |
| # w,h,c=uav_image_rgb.shape | |
| # # 指定裁剪区域的坐标 | |
| # x = w//2 # 起始横坐标 | |
| # y = h//2 # 起始纵坐标 | |
| # w = 150 # 宽度 | |
| # h = 150 # 高度 | |
| # # 裁剪图像 | |
| # uav_image_rgb = uav_image_rgb[y-h:y+h, x-w:x+w] | |
| map_vis_image = cv2.imread(str(map_vis / uav_name)) | |
| map_vis_image = cv2.cvtColor(map_vis_image, cv2.COLOR_BGR2RGB) | |
| map = np.load(str(map_path / map_name)) | |
| tfs = [] | |
| tfs.append(tvf.ToTensor()) | |
| tfs.append(tvf.Resize(256)) | |
| val_tfs = tvf.Compose(tfs) | |
| uav_image = val_tfs(uav_image_rgb) | |
| # print(id, uav_name, map_name, \ | |
| # uav_long, uav_lat, \ | |
| # map_long, map_lat, \ | |
| # tile_size_meters, pixel_per_meter, \ | |
| # u, v, yaw,dis) | |
| uav_path = str(uav_image_path / uav_name) | |
| return { | |
| 'map': torch.from_numpy(np.ascontiguousarray(map)).long().unsqueeze(0), | |
| 'image': torch.tensor(uav_image).unsqueeze(0), | |
| 'roll_pitch_yaw': torch.tensor((0, 0, float(yaw))).float().unsqueeze(0), | |
| 'pixels_per_meter': torch.tensor(float(pixel_per_meter)).float().unsqueeze(0), | |
| "uv": torch.tensor([float(u), float(v)]).float().unsqueeze(0), | |
| }, uav_image_rgb, map_vis_image, uav_path, [float(map_lat), float(map_long)] | |
| def crop_image(image, width, height): | |
| # 计算剪裁区域的起始点坐标 | |
| x = int((image.shape[1] - width) / 2) | |
| y = int((image.shape[0] - height) / 2) | |
| # 剪裁图像 | |
| cropped_image = image[y:y + height, x:x + width] | |
| return cropped_image | |
| def crop_square(image): | |
| # 获取图像的宽度和高度 | |
| height, width = image.shape[:2] | |
| # 确定最小边的长度 | |
| min_length = min(height, width) | |
| # 计算剪裁区域的坐标 | |
| top = (height - min_length) // 2 | |
| bottom = top + min_length | |
| left = (width - min_length) // 2 | |
| right = left + min_length | |
| # 剪裁图像为正方形 | |
| cropped_image = image[top:bottom, left:right] | |
| return cropped_image | |
| def read_input_image_test( | |
| image, | |
| prior_latlon, | |
| tile_size_meters, | |
| ): | |
| # image = read_image(image_path) | |
| # # 剪裁图像 | |
| # # 指定剪裁的宽度和高度 | |
| # width = 1080*2 | |
| # height =1080*2 | |
| # image = crop_square(image) | |
| # # print("input image:",image.shape) | |
| # image = crop_image(image, width, height) | |
| # # print("crop_image:",image.shape) | |
| image = cv2.resize(image,(256,256)) | |
| roll_pitch = None | |
| latlon = None | |
| if prior_latlon is not None: | |
| latlon = prior_latlon | |
| logger.info("Using prior latlon %s.", prior_latlon) | |
| if latlon is None: | |
| with open(image_path, "rb") as fid: | |
| exif = EXIF(fid, lambda: image.shape[:2]) | |
| geo = exif.extract_geo() | |
| if geo: | |
| alt = geo.get("altitude", 0) # read if available | |
| latlon = (geo["latitude"], geo["longitude"], alt) | |
| logger.info("Using prior location from EXIF.") | |
| # print(latlon) | |
| else: | |
| logger.info("Could not find any prior location in the image EXIF metadata.") | |
| latlon = np.array(latlon) | |
| proj = Projection(*latlon) | |
| center = proj.project(latlon) | |
| bbox = BoundaryBox(center, center) + float(tile_size_meters) | |
| camera=None | |
| image=cv2.resize(image,(256,256)) | |
| return image, camera, roll_pitch, proj, bbox, latlon | |
| if __name__ == '__main__': | |
| experiment_or_path = "weight/last-step-checkpointing.ckpt" | |
| # experiment_or_path="experiments/maplocanet_0906_diffhight/last-step-checkpointing.ckpt" | |
| image_path='images/00000.jpg' | |
| prior_latlon=(37.75704325989902,-122.435941445631) | |
| tile_size_meters=128 | |
| demo = Demo(experiment_or_path=experiment_or_path, num_rotations=128, device='cpu') | |
| image, camera, gravity, proj, bbox, true_prior_latlon = read_input_image_test( | |
| image_path, | |
| prior_latlon=prior_latlon, | |
| tile_size_meters=tile_size_meters, # try 64, 256, etc. | |
| ) | |
| tiler = TileManager.from_bbox(projection=proj, bbox=bbox + 10,ppm=1, tile_size=tile_size_meters) | |
| # tiler = TileManager.from_bbox(projection=proj, bbox=bbox + 10,ppm=1,path=root/city/'{}.osm'.format(city), tile_size=1) | |
| canvas = tiler.query(bbox) | |
| uv, yaw, prob, neural_map, image_rectified, data_, pred = demo.localize( | |
| image, camera, canvas) | |
| prior_latlon_pred = proj.unproject(canvas.to_xy(uv)) | |
| pass |