Spaces:
Sleeping
Sleeping
File size: 20,033 Bytes
a81e750 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
# -*- coding: utf-8 -*-
from phi.agent import Agent
from phi.model.google import Gemini
from phi.tools.duckduckgo import DuckDuckGo
import google.generativeai as genai
from google.generativeai import upload_file, get_file
import os
import numpy as np
import time
import uuid
import yt_dlp
import cv2
import mediapipe as mp
#==========================================================================================================
# Load a pre-trained face embedding model (OpenCV's FaceNet). This model has better performance than mp embedder
face_embedder = cv2.dnn.readNetFromTorch("nn4.small2.v1.t7") # Download the model from OpenCV's GitHub
# Define embedder with Mediapipe, -- comment off as worse performance for face detection
# Download the model from https://storage.googleapis.com/mediapipe-tasks/image_embedder
BaseOptions = mp.tasks.BaseOptions
ImageEmbedder = mp.tasks.vision.ImageEmbedder
ImageEmbedderOptions = mp.tasks.vision.ImageEmbedderOptions
VisionRunningMode = mp.tasks.vision.RunningMode
options = ImageEmbedderOptions(
base_options=BaseOptions(model_asset_path='mobilenet_v3_small_075_224_embedder.tflite'),
quantize=True,
running_mode=VisionRunningMode.IMAGE)
mp_embedder = ImageEmbedder.create_from_options(options)
#================================================================================================================
def initialize_agent():
return Agent(
name="Video AI summarizer",
model=Gemini(id="gemini-2.0-flash-exp"),
tools=[DuckDuckGo()],
show_tool_calls=True,
markdown=True,
)
# Based on cv2 facenet embedder
def get_face_embedding(face_image):
"""
Generate a face embedding using the pre-trained model.
"""
# Preprocess the face image with cv2
blob = cv2.dnn.blobFromImage(face_image, 1.0 / 255, (96, 96), (0, 0, 0), swapRB=True, crop=False)
face_embedder.setInput(blob)
embedding = face_embedder.forward()
return embedding.flatten()
# Based on mediapipe embedder
def get_mp_embedding(face_image):
"""
Generate a face embedding using the pre-trained model.
"""
# Load the input image from a numpy array.
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=np.array(face_image))
embedding_result = mp_embedder.embed(mp_image)
return embedding_result.embeddings[0]
# Advanced Face Tracking with MediaPipe and Face Embeddings
def face_detection_embed(video_path):
# Initialize MediaPipe Face Detection
mp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils
# Load a pre-trained face embedding model (OpenCV's FaceNet)
#embedder = cv2.dnn.readNetFromTorch("nn4.small2.v1.t7") # Download the model from OpenCV's GitHub, move out from this function
# Open the video file
video_capture = cv2.VideoCapture(video_path)
# Dictionary to store face embeddings and their corresponding IDs, number of matched, normalized images
face_tracker = {} # Format: {face_id: {"embedding": face_embedding, "number_matched": number_matched, "image": normalized_face}}
face_id_counter = 0
similarity_threshold = 0.5 # Threshold for considering two faces the same
frame_number = 0
# Define the target size for normalization
target_width = 100 # Desired width for all faces
target_height = 100 # Desired height for all faces
with mp_face_detection.FaceDetection(min_detection_confidence=0.5) as face_detection:
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
if not ret:
break
if frame_number % 30 == 0:
# Convert the frame to RGB for MediaPipe
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Process the frame with MediaPipe Face Detection
results = face_detection.process(rgb_frame)
if results.detections:
for detection in results.detections:
# Get the bounding box of the face
bboxC = detection.location_data.relative_bounding_box
ih, iw, _ = frame.shape
x = int(bboxC.xmin * iw)
y = int(bboxC.ymin * ih)
w = int(bboxC.width * iw)
h = int(bboxC.height * ih)
score = detection.score[0]
# Extract the face region
face_image = frame[y:y+h, x:x+w]
if face_image.size == 0:
continue # Skip empty face regions
#yield face_image # Yield the frame for streaming
# Generate the face embedding
face_embedding = get_face_embedding(face_image) #This model has better performance than mp embedder
#face_embedding = get_mp_embedding(face_image)
# Check if this face matches any previously tracked face, and find face_id with maximum similarity
matched_id = None
max_similarity = 0
for face_id, data in face_tracker.items():
# Calculate the cosine similarity between embeddings. This model has better performance than mp embedder
similarity = np.dot(face_embedding, data["embedding"]) / (
np.linalg.norm(face_embedding) * np.linalg.norm(data["embedding"])
)
'''
# Compute cosine similarity. comment off because of worse performance
similarity = ImageEmbedder.cosine_similarity(
face_embedding, data["embedding"])
'''
if similarity > max_similarity:
max_similarity = similarity
max_face_id = face_id
# Define a larger bounding box for output faceface
xb = int(x * 0.8)
yb = int(y * 0.8)
xe = int(x * 1.2 + w)
ye = int(y * 1.2 + h)
if max_similarity > similarity_threshold:
matched_id = max_face_id
number_matched = face_tracker[matched_id]["number_matched"] + 1
face_tracker[matched_id]["number_matched"] = number_matched
if score > face_tracker[matched_id]["score"]: #switch to higher score image
face_image_b = frame[yb:ye, xb:xe]
normalized_face = cv2.resize(face_image_b, (target_width, target_height))
face_tracker[matched_id] = {"embedding": face_embedding, "number_matched": number_matched, "image": normalized_face, "score":score}
# If the face is not matched, assign a new ID
if matched_id is None:
face_id_counter += 1
matched_id = face_id_counter
# Update the face tracker with the new embedding and frame number
face_image_b = frame[yb:ye, xb:xe]
normalized_face = cv2.resize(face_image_b, (target_width, target_height))
face_tracker[matched_id] = {"embedding": face_embedding, "number_matched": 0, "image": normalized_face, "score":score}
# Draw a larger bounding box and face ID
cv2.rectangle(frame, (xb, yb), (xe, ye), (0, 255, 0), 2)
cv2.putText(frame, f"ID: {matched_id}", (xb, yb - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
# Display the resulting frame, for debug purpose
#yield frame # Yield the frame for streaming
#time.sleep(2) #simulate a delay
# Increment frame number
frame_number += 1
# finished reading video
if len(face_tracker) == 0:
return None
sorted_data = sorted(face_tracker, key=lambda x: face_tracker[x]['number_matched'], reverse =True)
# find top N faces in all detected faces
number_faces = len(face_tracker)
if number_faces >= 3:
center_top1 = [sorted_data[1], sorted_data[0], sorted_data[2]] # Top 1 will take center position
else:
center_top1 = sorted_data
images = []
contents = []
for face_id in center_top1:
#yield face_tracker[face_id]["image"] # Yield the frame for streaming
#time.sleep(2) #simulate a delay
face_image = face_tracker[face_id]["image"]
images.append(face_image)
# Release the video capture object
video_capture.release()
cv2.destroyAllWindows()
return images
# Advanced object Tracking with MediaPipe object detection
def object_detection_embed(video_path):
# Initialize MediaPipe Face Detection
BaseOptions = mp.tasks.BaseOptions
ObjectDetector = mp.tasks.vision.ObjectDetector
ObjectDetectorOptions = mp.tasks.vision.ObjectDetectorOptions
VisionRunningMode = mp.tasks.vision.RunningMode
options = ObjectDetectorOptions(
base_options=BaseOptions(model_asset_path='efficientdet_lite0.tflite'),
max_results=3,
score_threshold=0.5,
running_mode=VisionRunningMode.IMAGE,
)
mp_drawing = mp.solutions.drawing_utils
# Load a pre-trained face embedding model (OpenCV's FaceNet)
#embedder = cv2.dnn.readNetFromTorch("nn4.small2.v1.t7") # Download the model from OpenCV's GitHub, move out from this function
# Open the video file
video_capture = cv2.VideoCapture(video_path)
# Dictionary to store face embeddings and their corresponding IDs, number of matched, normalized images
object_tracker = {} # Format: {object_id: {"embedding": obj_embedding, "number_matched": number_matched, "image": normalized_obj, "score":score, "category": category}}
object_id_counter = 0
similarity_threshold = 0.5 # Threshold for considering two faces the same
frame_number = 0
# Define the target size for normalization, only fix height
#target_width = 100 # Desired width for all faces
target_height = 100 # Desired height for all faces
with ObjectDetector.create_from_options(options) as obj_detection:
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
if not ret:
break
if frame_number % 30 == 0:
# Convert the frame to RGB for MediaPipe
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Load the image back into memory because Image object needs filepath input
frame_height, frame_width, _ = rgb_frame.shape
# Load the input image from a numpy array.
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=rgb_frame)
# Process the frame with MediaPipe Face Detection
results = obj_detection.detect(mp_image)
if results.detections:
for detection in results.detections:
#print("line 297: detection:", detection)
'''
sample output:
Detection(bounding_box=BoundingBox(origin_x=84, origin_y=168, width=272, height=448),
categories=[Category(index=None, score=0.81640625, display_name=None, category_name='person')], keypoints=[])
'''
# Get the bounding box of the face, note x is in height ditection(h)
bboxC = detection.bounding_box
x = int(bboxC.origin_x)
y = int(bboxC.origin_y)
w = int(bboxC.width)
h = int(bboxC.height)
score = detection.categories[0].score
category = detection.categories[0].category_name
# Extract the face region
obj_image = frame[y:y+w, x:x+h]
if obj_image.size == 0:
continue # Skip empty face regions
#yield obj_image # Yield the frame for streaming
# Generate the face embedding
#face_embedding = get_face_embedding(face_image) #This model has better performance than mp embedder
obj_embedding = get_mp_embedding(obj_image)
# Check if this face matches any previously tracked face, and find face_id with maximum similarity
matched_id = None
max_similarity = 0
for obj_id, data in object_tracker.items():
'''
# Calculate the cosine similarity between embeddings. This model has better performance than mp embedder
similarity = np.dot(face_embedding, data["embedding"]) / (
np.linalg.norm(face_embedding) * np.linalg.norm(data["embedding"])
)
'''
# Compute cosine similarity. comment off because of worse performance
similarity = ImageEmbedder.cosine_similarity(
obj_embedding, data["embedding"])
if similarity > max_similarity:
max_similarity = similarity
max_obj_id = obj_id
# Define a larger bounding box for output faceface
xb = int(x * 0.8)
yb = int(y * 0.8)
xe = int(x * 1.2 + h)
ye = int(y * 1.2 + w)
scale = target_height / (x * 0.4 + w)
target_width = int((y * 0.4 + w) * scale)
if max_similarity > similarity_threshold:
matched_id = max_obj_id
number_matched = object_tracker[matched_id]["number_matched"] + 1
object_tracker[matched_id]["number_matched"] = number_matched
if score > object_tracker[matched_id]["score"]: #switch to higher score image
obj_image_b = frame[yb:ye, xb:xe]
normalized_obj = cv2.resize(obj_image_b, (target_width, target_height))
object_tracker[matched_id] = {"embedding": obj_embedding, "number_matched": number_matched, "image": normalized_obj, "score":score, "category":category}
# If the face is not matched, assign a new ID
if matched_id is None:
object_id_counter += 1
matched_id = object_id_counter
# Update the face tracker with the new embedding and frame number
obj_image_b = frame[yb:ye, xb:xe]
normalized_obj = cv2.resize(obj_image_b, (target_width, target_height))
object_tracker[matched_id] = {"embedding": obj_embedding, "number_matched": 0, "image": normalized_obj, "score":score, "category":category}
# Draw a larger bounding box and face ID
#cv2.rectangle(frame, (xb, yb), (xe, ye), (0, 255, 0), 2)
#cv2.putText(frame, f"ID: {matched_id}", (xb, yb - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
# Display the resulting frame, for debug purpose
#yield frame # Yield the frame for streaming
#time.sleep(2) #simulate a delay
# Increment frame number
frame_number += 1
# finished reading video
if len(object_tracker) == 0:
return None
sorted_data = sorted(object_tracker, key=lambda x: object_tracker[x]['number_matched'], reverse =True)
# find top N faces in all detected faces
number_objs = len(object_tracker)
if number_objs >= 3:
center_top1 = [sorted_data[1], sorted_data[0], sorted_data[2]] # Top 1 will take center position
else:
center_top1 = sorted_data
images = []
contents = []
#center_top1 = [sorted_data[1], sorted_data[0], sorted_data[2]] # Top 1 will take center position
for obj_id in center_top1:
#yield object_tracker[obj_id]["image"] # Yield the frame for streaming
#time.sleep(2) #simulate a delay
obj_image = object_tracker[obj_id]["image"]
images.append(obj_image)
# Release the video capture object
video_capture.release()
cv2.destroyAllWindows()
return images
#=========================================================================================================
# Summarize video using phi Agent
def summarize_video(video_path, user_prompt, out_lang = 'Original'):
# Upload and process the video
processed_video = upload_file(video_path)
# Extract video info to a dictionary
video_info = str(processed_video).split('File(')[1]
video_info = video_info.replace(")", "")
video_dic = eval(video_info)
print("display_name, sha256_hash:", video_dic['display_name'], video_dic['sha256_hash'])
while processed_video.state.name == "PROCESSING":
time.sleep(1)
processed_video = get_file(processed_video.name)
# detect language
lang_prompt = (f'''Give language name''')
lang_response = multimodal_Agent.run(lang_prompt, videos=[processed_video]).content
language = str(lang_response).split(' ')[-1]
print('Video language is:', language)
if out_lang == 'Original':
out_lang = language
# Analysis prompt
analysis_prompt = ( f'''
First analyze the video and then answer following questions using the video analysis, questions:
{user_prompt}
Provide a comprehensive response focusing on practical, actionable information with original questions.
Answer questions in {out_lang}. limit the total lines to 30 lines.'''
)
# AI agent processing
response = multimodal_Agent.run(analysis_prompt, videos=[processed_video])
markdown_text = response.content
return out_lang, str(markdown_text)
#=======================================================================================
# Initialize the agent
multimodal_Agent = initialize_agent() |