Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,88 +1,53 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
-
from
|
4 |
|
5 |
-
# List of
|
6 |
model_names = [
|
7 |
-
"
|
8 |
-
"
|
9 |
-
"
|
10 |
-
"sshleifer/distilbart-cnn-12-6",
|
11 |
-
"allenai/led-base-16384",
|
12 |
-
"google/pegasus-xsum",
|
13 |
-
"togethercomputer/LLaMA-2-7B-32K"
|
14 |
]
|
15 |
|
16 |
-
# Placeholder for
|
17 |
-
|
18 |
-
tokenizer = None
|
19 |
-
max_tokens = None
|
20 |
|
21 |
-
#
|
22 |
-
example_text = (
|
23 |
-
"Artificial intelligence (AI) is intelligence—perceiving, synthesizing, and inferring information—"
|
24 |
-
"demonstrated by machines, as opposed to intelligence displayed by non-human animals and humans. "
|
25 |
-
"Example tasks in which AI is employed include speech recognition, computer vision, language translation, "
|
26 |
-
"autonomous vehicles, and game playing. AI research has been defined as the field of study of intelligent "
|
27 |
-
"agents, which refers to any system that perceives its environment and takes actions that maximize its "
|
28 |
-
"chance of achieving its goals."
|
29 |
-
)
|
30 |
-
|
31 |
-
# Function to load the selected model
|
32 |
def load_model(model_name):
|
33 |
-
global
|
34 |
try:
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
config = AutoConfig.from_pretrained(model_name)
|
39 |
-
|
40 |
-
# Set a reasonable default for max_tokens if not available
|
41 |
-
max_tokens = getattr(config, 'max_position_embeddings', 1024)
|
42 |
-
|
43 |
-
return f"Model {model_name} loaded successfully! Max tokens: {max_tokens}"
|
44 |
except Exception as e:
|
45 |
-
return f"Failed to load model
|
46 |
-
|
47 |
-
# Function to summarize the input text
|
48 |
-
def summarize_text(input, min_length, max_length):
|
49 |
-
if summarizer is None:
|
50 |
-
return "No model loaded!"
|
51 |
|
|
|
|
|
|
|
|
|
52 |
try:
|
53 |
-
|
54 |
-
|
55 |
-
num_tokens = input_tokens.shape[1]
|
56 |
-
if num_tokens > max_tokens:
|
57 |
-
return f"Error: Input exceeds the max token limit of {max_tokens}."
|
58 |
-
|
59 |
-
# Ensure min/max lengths are within bounds
|
60 |
-
min_summary_length = max(10, int(num_tokens * (min_length / 100)))
|
61 |
-
max_summary_length = min(max_tokens, int(num_tokens * (max_length / 100)))
|
62 |
-
|
63 |
-
# Summarize the input text
|
64 |
-
output = summarizer(input, min_length=min_summary_length, max_length=max_summary_length, truncation=True)
|
65 |
-
return output[0]['summary_text']
|
66 |
except Exception as e:
|
67 |
-
return f"
|
68 |
|
69 |
-
# Gradio
|
70 |
with gr.Blocks() as demo:
|
71 |
with gr.Row():
|
72 |
-
model_dropdown = gr.Dropdown(choices=model_names, label="Choose a model", value="
|
73 |
load_button = gr.Button("Load Model")
|
|
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
summarize_button.click(fn=summarize_text, inputs=[input_text, min_length_slider, max_length_slider],
|
86 |
-
outputs=output_text)
|
87 |
|
88 |
demo.launch()
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
+
from diffusers import StableDiffusionPipeline
|
4 |
|
5 |
+
# List of models for text-to-image generation
|
6 |
model_names = [
|
7 |
+
"runwayml/stable-diffusion-v1-5",
|
8 |
+
"stabilityai/stable-diffusion-2-1",
|
9 |
+
"CompVis/stable-diffusion-v1-4"
|
|
|
|
|
|
|
|
|
10 |
]
|
11 |
|
12 |
+
# Placeholder for pipeline
|
13 |
+
pipe = None
|
|
|
|
|
14 |
|
15 |
+
# Function to load model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def load_model(model_name):
|
17 |
+
global pipe
|
18 |
try:
|
19 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_name, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)
|
20 |
+
pipe = pipe.to("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
+
return f"Model {model_name} loaded successfully!"
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
except Exception as e:
|
23 |
+
return f"Failed to load model: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
# Function to generate image from text
|
26 |
+
def generate_image(prompt, guidance_scale):
|
27 |
+
if pipe is None:
|
28 |
+
return None, "Model not loaded yet!"
|
29 |
try:
|
30 |
+
image = pipe(prompt, guidance_scale=guidance_scale).images[0]
|
31 |
+
return image, "Image generated successfully!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
except Exception as e:
|
33 |
+
return None, f"Image generation failed: {str(e)}"
|
34 |
|
35 |
+
# Gradio UI
|
36 |
with gr.Blocks() as demo:
|
37 |
with gr.Row():
|
38 |
+
model_dropdown = gr.Dropdown(choices=model_names, label="Choose a model", value="runwayml/stable-diffusion-v1-5")
|
39 |
load_button = gr.Button("Load Model")
|
40 |
+
load_status = gr.Textbox(label="Status", interactive=False)
|
41 |
|
42 |
+
with gr.Row():
|
43 |
+
prompt_input = gr.Textbox(label="Enter text prompt", placeholder="A futuristic city in the sky", lines=2)
|
44 |
+
guidance_slider = gr.Slider(minimum=1, maximum=20, value=7.5, step=0.5, label="Guidance Scale")
|
45 |
+
|
46 |
+
generate_button = gr.Button("Generate Image")
|
47 |
+
output_image = gr.Image(label="Generated Image")
|
48 |
+
message = gr.Textbox(label="Generation Status", interactive=False)
|
49 |
+
|
50 |
+
load_button.click(fn=load_model, inputs=model_dropdown, outputs=load_status)
|
51 |
+
generate_button.click(fn=generate_image, inputs=[prompt_input, guidance_slider], outputs=[output_image, message])
|
|
|
|
|
52 |
|
53 |
demo.launch()
|