Spaces:
Running
Running
Update data_collector.py
Browse files- data_collector.py +55 -14
data_collector.py
CHANGED
@@ -6,22 +6,63 @@ from sentence_transformers import SentenceTransformer,util
|
|
6 |
from transformers import pipeline
|
7 |
import requests
|
8 |
|
9 |
-
def consume_llm_api(prompt):
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
def relevent_value(long_query,count=3):
|
|
|
6 |
from transformers import pipeline
|
7 |
import requests
|
8 |
|
9 |
+
# def consume_llm_api(prompt):
|
10 |
+
# """
|
11 |
+
# Sends a prompt to the LLM API and processes the streamed response.
|
12 |
+
# """
|
13 |
+
# url = "https://8417-201-238-124-65.ngrok-free.app/api/llm-response"
|
14 |
+
# headers = {"Content-Type": "application/json"}
|
15 |
+
# payload = {"prompt": prompt,"extension":"1"}
|
16 |
|
17 |
|
18 |
+
# print("Sending prompt to the LLM API...")
|
19 |
+
# response_ = requests.post(url, json=payload,verify=False)
|
20 |
+
# response_data = response_.json()
|
21 |
+
# return response_data['text']
|
22 |
+
def consume_llm_api(prompt):
|
23 |
+
|
24 |
+
import requests
|
25 |
+
from sentence_transformers import SentenceTransformer
|
26 |
+
from pinecone import Pinecone, ServerlessSpec
|
27 |
+
Gen_api = "https://8417-201-238-124-65.ngrok-free.app/api/llm-response"
|
28 |
+
api_key = "pcsk_2EhvKP_GqGkpAjF4p4ziL7PgrgM9xuKcthX9gtqhyLxV3UaMmWTQufW4qKZrjhLrf2d1ma"
|
29 |
+
pc = Pinecone(api_key=api_key)
|
30 |
+
model = SentenceTransformer("all-mpnet-base-v2")
|
31 |
+
try:
|
32 |
+
index_name = "quickstart"
|
33 |
+
pc.create_index(
|
34 |
+
name=index_name,
|
35 |
+
dimension=768,
|
36 |
+
metric="cosine",
|
37 |
+
spec=ServerlessSpec(
|
38 |
+
cloud="aws",
|
39 |
+
region="us-east-1"
|
40 |
+
)
|
41 |
+
)
|
42 |
+
except:
|
43 |
+
pass
|
44 |
+
index = pc.Index(index_name)
|
45 |
+
index.upsert(
|
46 |
+
vectors=[
|
47 |
+
{
|
48 |
+
"id": "lorum",
|
49 |
+
"values": [float(i) for i in list(model.encode("lorum"))],
|
50 |
+
"metadata": {"string":str(prompt)}
|
51 |
+
|
52 |
+
}
|
53 |
+
]
|
54 |
+
)
|
55 |
+
|
56 |
+
gen_api_response = requests.post(url = Gen_api,json={"api_key": api_key},verify=False)
|
57 |
+
|
58 |
+
if gen_api_response.json().get("status"):
|
59 |
+
response = index.query(
|
60 |
+
vector=[float(i) for i in model.encode(str(prompt))],
|
61 |
+
top_k=1,
|
62 |
+
include_metadata=True,
|
63 |
+
)
|
64 |
+
|
65 |
+
return response['matches'][0]['metadata']['string']
|
66 |
|
67 |
|
68 |
def relevent_value(long_query,count=3):
|