Spaces:
Running
Running
Update data_collector.py
Browse files- data_collector.py +50 -50
data_collector.py
CHANGED
@@ -6,64 +6,64 @@ from sentence_transformers import SentenceTransformer,util
|
|
6 |
from transformers import pipeline
|
7 |
import requests
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
def consume_llm_api(prompt):
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
|
65 |
|
66 |
-
|
67 |
|
68 |
|
69 |
def relevent_value(long_query,count=3):
|
|
|
6 |
from transformers import pipeline
|
7 |
import requests
|
8 |
|
9 |
+
def consume_llm_api(prompt):
|
10 |
+
"""
|
11 |
+
Sends a prompt to the LLM API and processes the streamed response.
|
12 |
+
"""
|
13 |
+
url = "https://8417-201-238-124-65.ngrok-free.app/api/llm-response"
|
14 |
+
headers = {"Content-Type": "application/json"}
|
15 |
+
payload = {"prompt": prompt,"extension":"1"}
|
16 |
|
17 |
|
18 |
+
print("Sending prompt to the LLM API...")
|
19 |
+
response_ = requests.post(url, json=payload,verify=False)
|
20 |
+
response_data = response_.json()
|
21 |
+
return response_data['text']
|
22 |
+
# def consume_llm_api(prompt):
|
23 |
|
24 |
+
# import requests
|
25 |
+
# from sentence_transformers import SentenceTransformer
|
26 |
+
# from pinecone import Pinecone, ServerlessSpec
|
27 |
+
# Gen_api = "https://8417-201-238-124-65.ngrok-free.app/api/llm-response"
|
28 |
+
# api_key = "pcsk_2EhvKP_GqGkpAjF4p4ziL7PgrgM9xuKcthX9gtqhyLxV3UaMmWTQufW4qKZrjhLrf2d1ma"
|
29 |
+
# pc = Pinecone(api_key=api_key)
|
30 |
+
# model = SentenceTransformer("all-mpnet-base-v2")
|
31 |
+
# try:
|
32 |
+
# index_name = "quickstart"
|
33 |
+
# pc.create_index(
|
34 |
+
# name=index_name,
|
35 |
+
# dimension=768,
|
36 |
+
# metric="cosine",
|
37 |
+
# spec=ServerlessSpec(
|
38 |
+
# cloud="aws",
|
39 |
+
# region="us-east-1"
|
40 |
+
# )
|
41 |
+
# )
|
42 |
+
# except:
|
43 |
+
# pass
|
44 |
+
# index = pc.Index(index_name)
|
45 |
+
# index.upsert(
|
46 |
+
# vectors=[
|
47 |
+
# {
|
48 |
+
# "id": "lorum",
|
49 |
+
# "values": [float(i) for i in list(model.encode("lorum"))],
|
50 |
+
# "metadata": {"string":str(prompt)}
|
51 |
|
52 |
+
# }
|
53 |
+
# ]
|
54 |
+
# )
|
55 |
|
56 |
+
# gen_api_response = requests.post(url = Gen_api,json={"api_key": api_key},verify=False)
|
57 |
|
58 |
+
# if gen_api_response.json().get("status"):
|
59 |
+
# response = index.query(
|
60 |
+
# vector=[float(i) for i in model.encode(str(prompt))],
|
61 |
+
# top_k=1,
|
62 |
+
# include_metadata=True,
|
63 |
+
# )
|
64 |
|
65 |
|
66 |
+
# return response['matches'][0]['metadata']['string']
|
67 |
|
68 |
|
69 |
def relevent_value(long_query,count=3):
|