Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,17 +6,18 @@ from sentence_transformers.util import cos_sim
|
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
import gradio as gr
|
8 |
#%%
|
9 |
-
etalon = pd.read_csv("etalon_prod.csv")
|
10 |
df = pd.read_csv("preprocessed_complaints.csv")
|
11 |
|
12 |
model = SentenceTransformer('sentence-transformers/multi-qa-distilbert-cos-v1')
|
13 |
|
14 |
|
15 |
-
unique_complaints = df['Жалобы'].
|
16 |
|
17 |
with open("embeddings.npy", 'rb') as f:
|
18 |
embeddings = np.load(f)
|
19 |
|
|
|
20 |
def get_recommend(user_input,
|
21 |
top_k_spec = 3,
|
22 |
top_k_services = 5,
|
@@ -69,7 +70,7 @@ def get_recommend(user_input,
|
|
69 |
result['Рекомендации по обследованию'] = top_k_services_lst
|
70 |
result['Рекомендации по обследованию по МКБ'] = top_k_services_lst_by_mkb
|
71 |
|
72 |
-
return result
|
73 |
#%%
|
74 |
gradio_app = gr.Interface(
|
75 |
get_recommend,
|
|
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
import gradio as gr
|
8 |
#%%
|
9 |
+
# etalon = pd.read_csv("etalon_prod.csv")
|
10 |
df = pd.read_csv("preprocessed_complaints.csv")
|
11 |
|
12 |
model = SentenceTransformer('sentence-transformers/multi-qa-distilbert-cos-v1')
|
13 |
|
14 |
|
15 |
+
unique_complaints = df['Жалобы'].unique()
|
16 |
|
17 |
with open("embeddings.npy", 'rb') as f:
|
18 |
embeddings = np.load(f)
|
19 |
|
20 |
+
#%%
|
21 |
def get_recommend(user_input,
|
22 |
top_k_spec = 3,
|
23 |
top_k_services = 5,
|
|
|
70 |
result['Рекомендации по обследованию'] = top_k_services_lst
|
71 |
result['Рекомендации по обследованию по МКБ'] = top_k_services_lst_by_mkb
|
72 |
|
73 |
+
return result, sorted_df
|
74 |
#%%
|
75 |
gradio_app = gr.Interface(
|
76 |
get_recommend,
|