File size: 8,460 Bytes
b60fb62
 
 
 
 
 
 
 
 
a109fac
b60fb62
 
 
 
8bcb9ac
 
a109fac
4e53bc0
 
8bcb9ac
 
0514194
8bcb9ac
4e53bc0
8bcb9ac
b60fb62
 
0514194
8bcb9ac
 
b60fb62
 
 
588d1ff
 
 
b60fb62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a109fac
b60fb62
 
 
 
 
 
 
a109fac
b60fb62
 
a109fac
 
b60fb62
 
 
 
 
 
 
 
588d1ff
b60fb62
 
a109fac
 
b60fb62
 
 
 
 
 
 
 
 
 
588d1ff
b60fb62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
588d1ff
b60fb62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
588d1ff
b60fb62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bcb9ac
 
 
 
 
 
 
 
 
 
b60fb62
8bcb9ac
 
a109fac
b60fb62
 
 
 
 
9e94863
 
 
b60fb62
 
 
a109fac
b60fb62
 
 
 
a109fac
b60fb62
 
0514194
9e94863
a109fac
b60fb62
a109fac
b60fb62
 
 
 
 
a109fac
e2b9b1a
b60fb62
a109fac
b60fb62
0514194
b60fb62
 
 
 
 
a109fac
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#!/usr/bin/env python

import os
import re
import tempfile
from collections.abc import Iterator
from threading import Thread

import cv2
import gradio as gr
import spaces
import torch
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer, Qwen2_5_VLForConditionalGeneration
from qwen_vl_utils import process_vision_info

#import subprocess
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    "lingshu-medical-mllm/Lingshu-7B",
    torch_dtype=torch.bfloat16,
    #attn_implementation="flash_attention_2",
    device_map="auto",
)

processor = AutoProcessor.from_pretrained("lingshu-medical-mllm/Lingshu-7B")


MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))


MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))


def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
    image_count = 0
    video_count = 0
    for path in paths:
        if path.endswith(".mp4"):
            video_count += 1
        else:
            image_count += 1
    return image_count, video_count


def count_files_in_history(history: list[dict]) -> tuple[int, int]:
    image_count = 0
    video_count = 0
    for item in history:
        if item["role"] != "user" or isinstance(item["content"], str):
            continue
        if item["content"][0].endswith(".mp4"):
            video_count += 1
        else:
            image_count += 1
    return image_count, video_count


def validate_media_constraints(message: dict, history: list[dict]) -> bool:
    new_image_count, new_video_count = count_files_in_new_message(message["files"])
    history_image_count, history_video_count = count_files_in_history(history)
    image_count = history_image_count + new_image_count
    video_count = history_video_count + new_video_count
    if video_count > 1:
        gr.Warning("Only one video is supported.")
        return False
    if video_count == 1:
        if image_count > 0:
            gr.Warning("Mixing images and videos is not allowed.")
            return False
        if "<image>" in message["text"]:
            gr.Warning("Using <image> tags with video files is not supported.")
            return False
    if video_count == 0 and image_count > MAX_NUM_IMAGES:
        gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
        return False
    if "<image>" in message["text"] and message["text"].count("<image>") != new_image_count:
        gr.Warning("The number of <image> tags in the text does not match the number of images.")
        return False
    return True


def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
    vidcap = cv2.VideoCapture(video_path)
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))

    frame_interval = max(total_frames // MAX_NUM_IMAGES, 1)
    frames: list[tuple[Image.Image, float]] = []

    for i in range(0, min(total_frames, MAX_NUM_IMAGES * frame_interval), frame_interval):
        if len(frames) >= MAX_NUM_IMAGES:
            break

        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))

    vidcap.release()
    return frames


def process_video(video_path: str) -> list[dict]:
    content = []
    frames = downsample_video(video_path)
    for frame in frames:
        pil_image, timestamp = frame
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
            pil_image.save(temp_file.name)
            content.append({"type": "text", "text": f"Frame {timestamp}:"})
            content.append({"type": "image", "image": temp_file.name})
    logger.debug(f"{content=}")
    return content


def process_interleaved_images(message: dict) -> list[dict]:
    logger.debug(f"{message['files']=}")
    parts = re.split(r"(<image>)", message["text"])
    logger.debug(f"{parts=}")

    content = []
    image_index = 0
    for part in parts:
        logger.debug(f"{part=}")
        if part == "<image>":
            content.append({"type": "image", "image": message["files"][image_index]})
            logger.debug(f"file: {message['files'][image_index]}")
            image_index += 1
        elif part.strip():
            content.append({"type": "text", "text": part.strip()})
        elif isinstance(part, str) and part != "<image>":
            content.append({"type": "text", "text": part})
    logger.debug(f"{content=}")
    return content


def process_new_user_message(message: dict) -> list[dict]:
    if not message["files"]:
        return [{"type": "text", "text": message["text"]}]
    if message["files"][0].endswith(".mp4"):
        return [{"type": "text", "text": message["text"]}, *process_video(message["files"][0])]
    if "<image>" in message["text"]:
        return process_interleaved_images(message)
    return [
        {"type": "text", "text": message["text"]},
        *[{"type": "image", "image": path} for path in message["files"]],
    ]


def process_history(history: list[dict]) -> list[dict]:
    messages = []
    current_user_content: list[dict] = []
    for item in history:
        if item["role"] == "assistant":
            if current_user_content:
                messages.append({"role": "user", "content": current_user_content})
                current_user_content = []
            messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
        else:
            content = item["content"]
            if isinstance(content, str):
                current_user_content.append({"type": "text", "text": content})
            else:
                current_user_content.append({"type": "image", "image": content[0]})
    return messages


@spaces.GPU(duration=120)
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 2048) -> Iterator[str]:
    if not validate_media_constraints(message, history):
        yield ""
        return

    messages = []
    if system_prompt:
        messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
    messages.extend(process_history(history))
    messages.append({"role": "user", "content": process_new_user_message(message)})

    # Preparation for inference
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to(model.device)

    streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        inputs,
        max_new_tokens=max_new_tokens,
        streamer=streamer,
        temperature=0.7,
        top_p=1,
        repetition_penalty=1,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    output = ""
    for delta in streamer:
        output += delta
        yield output


DESCRIPTION = """\
This is a demo of Lingshu 7B, a multimodal model trained for performance on medical text and image comprehension.
Lingshu supports more than 12 medical imaging modalities, including X-Ray, CT Scan, MRI, Microscopy, Ultrasound, Histopathology, Dermoscopy, Fundus, OCT, Digital Photography, Endoscopy, and PET.
"""

demo = gr.ChatInterface(
    fn=run,
    type="messages",
    chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
    textbox=gr.MultimodalTextbox(file_types=["image", ".mp4"], file_count="multiple", autofocus=True),
    multimodal=True,
    additional_inputs=[
        gr.Textbox(label="System Prompt", value="You are a helpful medical expert."),
        gr.Slider(label="Max New Tokens", minimum=100, maximum=8192, step=10, value=2048),
    ],
    stop_btn=False,
    title="Lingshu 7B",
    description=DESCRIPTION,
    run_examples_on_click=False,
    cache_examples=False,
    css_paths="style.css",
    delete_cache=(1800, 1800),
)

if __name__ == "__main__":
    demo.launch()