Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,6 +8,102 @@ import numpy as np
|
|
| 8 |
token=os.environ.get("key_")
|
| 9 |
tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vtk",token=token)
|
| 10 |
models= {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
@spaces.GPU
|
| 12 |
def get_model(name_model):
|
| 13 |
global models
|
|
@@ -32,10 +128,12 @@ def modelspeech(text,name_model):
|
|
| 32 |
|
| 33 |
inputs = tokenizer(text, return_tensors="pt")
|
| 34 |
model=get_model(name_model)
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
return model.config.sampling_rate,wav
|
| 39 |
|
| 40 |
model_choices = gr.Dropdown(
|
| 41 |
choices=[
|
|
@@ -56,6 +154,6 @@ model_choices = gr.Dropdown(
|
|
| 56 |
label="اختر النموذج",
|
| 57 |
value="wasmdashai/vits-ar-sa-huba-v2",
|
| 58 |
)
|
| 59 |
-
demo = gr.Interface(fn=modelspeech, inputs=["text",model_choices], outputs=["audio"])
|
| 60 |
demo.queue()
|
| 61 |
demo.launch()
|
|
|
|
| 8 |
token=os.environ.get("key_")
|
| 9 |
tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vtk",token=token)
|
| 10 |
models= {}
|
| 11 |
+
|
| 12 |
+
import noisereduce as nr
|
| 13 |
+
|
| 14 |
+
import torch
|
| 15 |
+
from typing import Any, Callable, Optional, Tuple, Union,Iterator
|
| 16 |
+
|
| 17 |
+
import torch.nn as nn # Import the missing module
|
| 18 |
+
def remove_noise_nr(audio_data,sr=16000):
|
| 19 |
+
"""يزيل الضوضاء باستخدام مكتبة noisereduce."""
|
| 20 |
+
reduced_noise = nr.reduce_noise(y=audio_data,hop_length=256, sr=sr)
|
| 21 |
+
return reduced_noise
|
| 22 |
+
|
| 23 |
+
def _inference_forward_stream(
|
| 24 |
+
self,
|
| 25 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 26 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 27 |
+
speaker_embeddings: Optional[torch.Tensor] = None,
|
| 28 |
+
output_attentions: Optional[bool] = None,
|
| 29 |
+
output_hidden_states: Optional[bool] = None,
|
| 30 |
+
return_dict: Optional[bool] = None,
|
| 31 |
+
padding_mask: Optional[torch.Tensor] = None,
|
| 32 |
+
chunk_size: int = 32, # Chunk size for streaming output
|
| 33 |
+
is_streaming: bool = True,
|
| 34 |
+
) -> Iterator[torch.Tensor]:
|
| 35 |
+
"""Generates speech waveforms in a streaming fashion."""
|
| 36 |
+
if attention_mask is not None:
|
| 37 |
+
padding_mask = attention_mask.unsqueeze(-1).float()
|
| 38 |
+
else:
|
| 39 |
+
padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
text_encoder_output = self.text_encoder(
|
| 44 |
+
input_ids=input_ids,
|
| 45 |
+
padding_mask=padding_mask,
|
| 46 |
+
attention_mask=attention_mask,
|
| 47 |
+
output_attentions=output_attentions,
|
| 48 |
+
output_hidden_states=output_hidden_states,
|
| 49 |
+
return_dict=return_dict,
|
| 50 |
+
)
|
| 51 |
+
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
|
| 52 |
+
hidden_states = hidden_states.transpose(1, 2)
|
| 53 |
+
input_padding_mask = padding_mask.transpose(1, 2)
|
| 54 |
+
|
| 55 |
+
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
|
| 56 |
+
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
|
| 57 |
+
|
| 58 |
+
if self.config.use_stochastic_duration_prediction:
|
| 59 |
+
log_duration = self.duration_predictor(
|
| 60 |
+
hidden_states,
|
| 61 |
+
input_padding_mask,
|
| 62 |
+
speaker_embeddings,
|
| 63 |
+
reverse=True,
|
| 64 |
+
noise_scale=self.noise_scale_duration,
|
| 65 |
+
)
|
| 66 |
+
else:
|
| 67 |
+
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
|
| 68 |
+
|
| 69 |
+
length_scale = 1.0 / self.speaking_rate
|
| 70 |
+
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
|
| 71 |
+
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
# Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
|
| 75 |
+
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
|
| 76 |
+
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
|
| 77 |
+
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
|
| 78 |
+
|
| 79 |
+
# Reconstruct an attention tensor of shape (batch, 1, out_length, in_length)
|
| 80 |
+
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
|
| 81 |
+
batch_size, _, output_length, input_length = attn_mask.shape
|
| 82 |
+
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
|
| 83 |
+
indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
|
| 84 |
+
valid_indices = indices.unsqueeze(0) < cum_duration
|
| 85 |
+
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
|
| 86 |
+
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
|
| 87 |
+
attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask
|
| 88 |
+
|
| 89 |
+
# Expand prior distribution
|
| 90 |
+
prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2)
|
| 91 |
+
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2)
|
| 92 |
+
|
| 93 |
+
prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
|
| 94 |
+
latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
|
| 95 |
+
|
| 96 |
+
spectrogram = latents * output_padding_mask
|
| 97 |
+
if is_streaming:
|
| 98 |
+
|
| 99 |
+
for i in range(0, spectrogram.size(-1), chunk_size):
|
| 100 |
+
with torch.no_grad():
|
| 101 |
+
wav=self.decoder(spectrogram[:,:,i : i + chunk_size] ,speaker_embeddings)
|
| 102 |
+
yield wav.squeeze().cpu().numpy()
|
| 103 |
+
else:
|
| 104 |
+
|
| 105 |
+
wav=self.decoder(spectrogram,speaker_embeddings)
|
| 106 |
+
yield wav.squeeze().cpu().numpy()
|
| 107 |
@spaces.GPU
|
| 108 |
def get_model(name_model):
|
| 109 |
global models
|
|
|
|
| 128 |
|
| 129 |
inputs = tokenizer(text, return_tensors="pt")
|
| 130 |
model=get_model(name_model)
|
| 131 |
+
with torch.no_grad():
|
| 132 |
+
wav=list(_inference_forward_stream(model,input_ids=inputs.input_ids.cuda(),attention_mask=inputs.attention_mask.cuda(),speaker_embeddings= None,is_streaming=False))[0]
|
| 133 |
+
# with torch.no_grad():
|
| 134 |
+
# wav = model(input_ids=inputs["input_ids"].cuda()).waveform.cpu().numpy().reshape(-1)#.detach()
|
| 135 |
|
| 136 |
+
return model.config.sampling_rate,wav,remove_noise_nr(wav)
|
| 137 |
|
| 138 |
model_choices = gr.Dropdown(
|
| 139 |
choices=[
|
|
|
|
| 154 |
label="اختر النموذج",
|
| 155 |
value="wasmdashai/vits-ar-sa-huba-v2",
|
| 156 |
)
|
| 157 |
+
demo = gr.Interface(fn=modelspeech, inputs=["text",model_choices], outputs=["audio","audio"])
|
| 158 |
demo.queue()
|
| 159 |
demo.launch()
|