Spaces:
Sleeping
Sleeping
| import math | |
| from typing import Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from torch import nn | |
| from transformers.activations import ACT2FN | |
| from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled | |
| from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask | |
| from transformers.modeling_outputs import BaseModelOutput | |
| from .vits_config import VitsConfig | |
| from .vits_output import VitsTextEncoderOutput | |
| #.................................................... | |
| class VitsFeedForward(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.conv_1 = nn.Conv1d(config.hidden_size, config.ffn_dim, config.ffn_kernel_size) | |
| self.conv_2 = nn.Conv1d(config.ffn_dim, config.hidden_size, config.ffn_kernel_size) | |
| self.dropout = nn.Dropout(config.activation_dropout) | |
| if isinstance(config.hidden_act, str): | |
| self.act_fn = ACT2FN[config.hidden_act] | |
| else: | |
| self.act_fn = config.hidden_act | |
| if config.ffn_kernel_size > 1: | |
| pad_left = (config.ffn_kernel_size - 1) // 2 | |
| pad_right = config.ffn_kernel_size // 2 | |
| self.padding = [pad_left, pad_right, 0, 0, 0, 0] | |
| else: | |
| self.padding = None | |
| def forward(self, hidden_states, padding_mask): | |
| hidden_states = hidden_states.permute(0, 2, 1) | |
| padding_mask = padding_mask.permute(0, 2, 1) | |
| hidden_states = hidden_states * padding_mask | |
| if self.padding is not None: | |
| hidden_states = nn.functional.pad(hidden_states, self.padding) | |
| hidden_states = self.conv_1(hidden_states) | |
| hidden_states = self.act_fn(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = hidden_states * padding_mask | |
| if self.padding is not None: | |
| hidden_states = nn.functional.pad(hidden_states, self.padding) | |
| hidden_states = self.conv_2(hidden_states) | |
| hidden_states = hidden_states * padding_mask | |
| hidden_states = hidden_states.permute(0, 2, 1) | |
| return hidden_states | |
| #............................................................................................. | |
| class VitsAttention(nn.Module): | |
| """Multi-headed attention with relative positional representation.""" | |
| def __init__(self, config: VitsConfig): | |
| super().__init__() | |
| self.embed_dim = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.dropout = config.attention_dropout | |
| self.window_size = config.window_size | |
| self.head_dim = self.embed_dim // self.num_heads | |
| self.scaling = self.head_dim**-0.5 | |
| if (self.head_dim * self.num_heads) != self.embed_dim: | |
| raise ValueError( | |
| f"hidden_size must be divisible by num_attention_heads (got `hidden_size`: {self.embed_dim}" | |
| f" and `num_attention_heads`: {self.num_heads})." | |
| ) | |
| self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias) | |
| self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias) | |
| self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias) | |
| self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias) | |
| if self.window_size: | |
| self.emb_rel_k = nn.Parameter(torch.randn(1, self.window_size * 2 + 1, self.head_dim) * self.scaling) | |
| self.emb_rel_v = nn.Parameter(torch.randn(1, self.window_size * 2 + 1, self.head_dim) * self.scaling) | |
| def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
| return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| key_value_states: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| layer_head_mask: Optional[torch.Tensor] = None, | |
| output_attentions: bool = False, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: | |
| """Input shape: Batch x Time x Channel""" | |
| # if key_value_states are provided this layer is used as a cross-attention layer | |
| # for the decoder | |
| bsz, tgt_len, _ = hidden_states.size() | |
| # get query proj | |
| query_states = self.q_proj(hidden_states) * self.scaling | |
| # self_attention | |
| key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
| value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
| proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
| query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
| key_states = key_states.view(*proj_shape) | |
| value_states = value_states.view(*proj_shape) | |
| src_len = key_states.size(1) | |
| attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
| if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
| raise ValueError( | |
| f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
| f" {attn_weights.size()}" | |
| ) | |
| if self.window_size is not None: | |
| key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, src_len) | |
| relative_logits = torch.matmul(query_states, key_relative_embeddings.transpose(-2, -1)) | |
| rel_pos_bias = self._relative_position_to_absolute_position(relative_logits) | |
| attn_weights += rel_pos_bias | |
| if attention_mask is not None: | |
| if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
| raise ValueError( | |
| f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
| ) | |
| attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
| attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
| attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
| if layer_head_mask is not None: | |
| if layer_head_mask.size() != (self.num_heads,): | |
| raise ValueError( | |
| f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" | |
| f" {layer_head_mask.size()}" | |
| ) | |
| attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
| attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
| if output_attentions: | |
| # this operation is a bit awkward, but it's required to | |
| # make sure that attn_weights keeps its gradient. | |
| # In order to do so, attn_weights have to be reshaped | |
| # twice and have to be reused in the following | |
| attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
| attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
| else: | |
| attn_weights_reshaped = None | |
| attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
| attn_output = torch.bmm(attn_probs, value_states) | |
| if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
| raise ValueError( | |
| f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
| f" {attn_output.size()}" | |
| ) | |
| if self.window_size is not None: | |
| value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, src_len) | |
| relative_weights = self._absolute_position_to_relative_position(attn_probs) | |
| rel_pos_bias = torch.matmul(relative_weights, value_relative_embeddings) | |
| attn_output += rel_pos_bias | |
| attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
| attn_output = attn_output.transpose(1, 2) | |
| # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
| # partitioned aross GPUs when using tensor-parallelism. | |
| attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
| attn_output = self.out_proj(attn_output) | |
| return attn_output, attn_weights_reshaped | |
| def _get_relative_embeddings(self, relative_embeddings, length): | |
| pad_length = max(length - (self.window_size + 1), 0) | |
| if pad_length > 0: | |
| relative_embeddings = nn.functional.pad(relative_embeddings, [0, 0, pad_length, pad_length, 0, 0]) | |
| slice_start_position = max((self.window_size + 1) - length, 0) | |
| slice_end_position = slice_start_position + 2 * length - 1 | |
| return relative_embeddings[:, slice_start_position:slice_end_position] | |
| def _relative_position_to_absolute_position(self, x): | |
| batch_heads, length, _ = x.size() | |
| # Concat columns of pad to shift from relative to absolute indexing. | |
| x = nn.functional.pad(x, [0, 1, 0, 0, 0, 0]) | |
| # Concat extra elements so to add up to shape (len+1, 2*len-1). | |
| x_flat = x.view([batch_heads, length * 2 * length]) | |
| x_flat = nn.functional.pad(x_flat, [0, length - 1, 0, 0]) | |
| # Reshape and slice out the padded elements. | |
| x_final = x_flat.view([batch_heads, length + 1, 2 * length - 1]) | |
| x_final = x_final[:, :length, length - 1 :] | |
| return x_final | |
| def _absolute_position_to_relative_position(self, x): | |
| batch_heads, length, _ = x.size() | |
| # Pad along column | |
| x = nn.functional.pad(x, [0, length - 1, 0, 0, 0, 0]) | |
| x_flat = x.view([batch_heads, length**2 + length * (length - 1)]) | |
| # Add 0's in the beginning that will skew the elements after reshape | |
| x_flat = nn.functional.pad(x_flat, [length, 0, 0, 0]) | |
| x_final = x_flat.view([batch_heads, length, 2 * length])[:, :, 1:] | |
| return x_final | |
| #............................................................................................. | |
| class VitsEncoderLayer(nn.Module): | |
| def __init__(self, config: VitsConfig): | |
| super().__init__() | |
| self.attention = VitsAttention(config) | |
| self.dropout = nn.Dropout(config.hidden_dropout) | |
| self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.feed_forward = VitsFeedForward(config) | |
| self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| padding_mask: torch.FloatTensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| output_attentions: bool = False, | |
| ): | |
| residual = hidden_states | |
| hidden_states, attn_weights = self.attention( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.layer_norm(residual + hidden_states) | |
| residual = hidden_states | |
| hidden_states = self.feed_forward(hidden_states, padding_mask) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.final_layer_norm(residual + hidden_states) | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (attn_weights,) | |
| return outputs | |
| #............................................................................................. | |
| class VitsEncoder(nn.Module): | |
| def __init__(self, config: VitsConfig): | |
| super().__init__() | |
| self.config = config | |
| self.layers = nn.ModuleList([VitsEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
| self.gradient_checkpointing = False | |
| self.layerdrop = config.layerdrop | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| padding_mask: torch.FloatTensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutput]: | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attentions = () if output_attentions else None | |
| # expand attention_mask | |
| if attention_mask is not None: | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) | |
| hidden_states = hidden_states * padding_mask | |
| deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() | |
| for encoder_layer in self.layers: | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
| dropout_probability = np.random.uniform(0, 1) | |
| skip_the_layer = self.training and (dropout_probability < self.layerdrop) | |
| if not skip_the_layer or deepspeed_zero3_is_enabled: | |
| # under deepspeed zero3 all gpus must run in sync | |
| if self.gradient_checkpointing and self.training: | |
| layer_outputs = self._gradient_checkpointing_func( | |
| encoder_layer.__call__, | |
| hidden_states, | |
| padding_mask, | |
| attention_mask, | |
| output_attentions, | |
| ) | |
| else: | |
| layer_outputs = encoder_layer( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| padding_mask=padding_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if skip_the_layer: | |
| layer_outputs = (None, None) | |
| if output_attentions: | |
| all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
| hidden_states = hidden_states * padding_mask | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
| return BaseModelOutput( | |
| last_hidden_state=hidden_states, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attentions, | |
| ) | |
| #............................................................................................. | |
| class VitsTextEncoder(nn.Module): | |
| """ | |
| Transformer encoder that uses relative positional representation instead of absolute positional encoding. | |
| """ | |
| def __init__(self, config: VitsConfig): | |
| super().__init__() | |
| self.config = config | |
| self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) | |
| self.encoder = VitsEncoder(config) | |
| self.project = nn.Conv1d(config.hidden_size, config.flow_size * 2, kernel_size=1) | |
| def get_input_embeddings(self): | |
| return self.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.embed_tokens = value | |
| def forward( | |
| self, | |
| input_ids: torch.Tensor, | |
| padding_mask: torch.FloatTensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = True, | |
| ) -> Union[Tuple[torch.Tensor], VitsTextEncoderOutput]: | |
| hidden_states = self.embed_tokens(input_ids) * math.sqrt(self.config.hidden_size) | |
| encoder_outputs = self.encoder( | |
| hidden_states=hidden_states, | |
| padding_mask=padding_mask, | |
| attention_mask=attention_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| last_hidden_state = encoder_outputs[0] if not return_dict else encoder_outputs.last_hidden_state | |
| stats = self.project(last_hidden_state.transpose(1, 2)).transpose(1, 2) * padding_mask | |
| prior_means, prior_log_variances = torch.split(stats, self.config.flow_size, dim=2) | |
| if not return_dict: | |
| outputs = (last_hidden_state, prior_means, prior_log_variances) + encoder_outputs[1:] | |
| return outputs | |
| return VitsTextEncoderOutput( | |
| last_hidden_state=last_hidden_state, | |
| prior_means=prior_means, | |
| prior_log_variances=prior_log_variances, | |
| hidden_states=encoder_outputs.hidden_states, | |
| attentions=encoder_outputs.attentions, | |
| ) | |
| #............................................................................................. | |