Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -181,6 +181,7 @@ def get_data_loader(train_dataset_dirs,eval_dataset_dir,full_generation_dir,dev
|
|
| 181 |
device = device)
|
| 182 |
return ctrain_datasets,eval_dataset,full_generation_dataset
|
| 183 |
global_step=0
|
|
|
|
| 184 |
def trainer_to_cuda(self,
|
| 185 |
ctrain_datasets = None,
|
| 186 |
eval_dataset = None,
|
|
@@ -563,7 +564,7 @@ dir_model='wasmdashai/vits-ar-huba-fine'
|
|
| 563 |
|
| 564 |
|
| 565 |
global_step=0
|
| 566 |
-
|
| 567 |
@spaces.GPU
|
| 568 |
def greet(text,id):
|
| 569 |
global GK
|
|
@@ -595,9 +596,9 @@ def greet(text,id):
|
|
| 595 |
eval_dataset_dir = os.path.join(dataset_dir,'eval'),
|
| 596 |
full_generation_dir = os.path.join(dataset_dir,'full_generation'),
|
| 597 |
device=device)
|
| 598 |
-
|
| 599 |
wandb.init(project= 'AZ',config = training_args.to_dict())
|
| 600 |
-
|
| 601 |
for i in range(10000):
|
| 602 |
# model.train(True)
|
| 603 |
print(f'clcye epochs ={i}')
|
|
@@ -605,7 +606,7 @@ def greet(text,id):
|
|
| 605 |
model=VitsModel.from_pretrained(dir_model,token=token).to(device)
|
| 606 |
# model.setMfA(monotonic_align.maximum_path)
|
| 607 |
#dir_model_save=dir_model+'/vend'
|
| 608 |
-
|
| 609 |
|
| 610 |
trainer_to_cuda(model,
|
| 611 |
ctrain_datasets = ctrain_datasets,
|
|
|
|
| 181 |
device = device)
|
| 182 |
return ctrain_datasets,eval_dataset,full_generation_dataset
|
| 183 |
global_step=0
|
| 184 |
+
@spaces.GPU
|
| 185 |
def trainer_to_cuda(self,
|
| 186 |
ctrain_datasets = None,
|
| 187 |
eval_dataset = None,
|
|
|
|
| 564 |
|
| 565 |
|
| 566 |
global_step=0
|
| 567 |
+
wandb.login(key= "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79")
|
| 568 |
@spaces.GPU
|
| 569 |
def greet(text,id):
|
| 570 |
global GK
|
|
|
|
| 596 |
eval_dataset_dir = os.path.join(dataset_dir,'eval'),
|
| 597 |
full_generation_dir = os.path.join(dataset_dir,'full_generation'),
|
| 598 |
device=device)
|
| 599 |
+
|
| 600 |
wandb.init(project= 'AZ',config = training_args.to_dict())
|
| 601 |
+
print('wandb')
|
| 602 |
for i in range(10000):
|
| 603 |
# model.train(True)
|
| 604 |
print(f'clcye epochs ={i}')
|
|
|
|
| 606 |
model=VitsModel.from_pretrained(dir_model,token=token).to(device)
|
| 607 |
# model.setMfA(monotonic_align.maximum_path)
|
| 608 |
#dir_model_save=dir_model+'/vend'
|
| 609 |
+
print('loadeed')
|
| 610 |
|
| 611 |
trainer_to_cuda(model,
|
| 612 |
ctrain_datasets = ctrain_datasets,
|