Spaces:
Sleeping
Sleeping
Upload vits_model_only_d.py
Browse files
VitsModelSplit/vits_model_only_d.py
ADDED
|
@@ -0,0 +1,431 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
import math
|
| 6 |
+
from typing import Any, Callable, Optional, Tuple, Union
|
| 7 |
+
from torch.cuda.amp import autocast, GradScaler
|
| 8 |
+
|
| 9 |
+
from .vits_config import VitsConfig,VitsPreTrainedModel
|
| 10 |
+
from .flow import VitsResidualCouplingBlock
|
| 11 |
+
from .duration_predictor import VitsDurationPredictor, VitsStochasticDurationPredictor
|
| 12 |
+
from .encoder import VitsTextEncoder
|
| 13 |
+
from .decoder import VitsHifiGan
|
| 14 |
+
from .posterior_encoder import VitsPosteriorEncoder
|
| 15 |
+
from .discriminator import VitsDiscriminator
|
| 16 |
+
from .vits_output import VitsModelOutput, VitsTrainingOutput
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class Vits_models_only_decoder(VitsPreTrainedModel):
|
| 20 |
+
|
| 21 |
+
def __init__(self, config: VitsConfig):
|
| 22 |
+
super().__init__(config)
|
| 23 |
+
|
| 24 |
+
self.config = config
|
| 25 |
+
self.text_encoder = VitsTextEncoder(config)
|
| 26 |
+
self.flow = VitsResidualCouplingBlock(config)
|
| 27 |
+
self.decoder = VitsHifiGan(config)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
if config.use_stochastic_duration_prediction:
|
| 32 |
+
self.duration_predictor = VitsStochasticDurationPredictor(config)
|
| 33 |
+
else:
|
| 34 |
+
self.duration_predictor = VitsDurationPredictor(config)
|
| 35 |
+
|
| 36 |
+
if config.num_speakers > 1:
|
| 37 |
+
self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size)
|
| 38 |
+
|
| 39 |
+
# This is used only for training.
|
| 40 |
+
self.posterior_encoder = VitsPosteriorEncoder(config)
|
| 41 |
+
self.discriminator = VitsDiscriminator(config)
|
| 42 |
+
|
| 43 |
+
# These parameters control the synthesised speech properties
|
| 44 |
+
self.speaking_rate = config.speaking_rate
|
| 45 |
+
self.noise_scale = config.noise_scale
|
| 46 |
+
self.noise_scale_duration = config.noise_scale_duration
|
| 47 |
+
self.segment_size = self.config.segment_size // self.config.hop_length
|
| 48 |
+
|
| 49 |
+
# Initialize weights and apply final processing
|
| 50 |
+
self.post_init()
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
#....................................
|
| 54 |
+
|
| 55 |
+
def monotonic_align_max_path(self,log_likelihoods, mask):
|
| 56 |
+
# used for training - awfully slow
|
| 57 |
+
# an alternative is proposed in examples/pytorch/text-to-speech/run_vits_finetuning.py
|
| 58 |
+
path = torch.zeros_like(log_likelihoods)
|
| 59 |
+
|
| 60 |
+
text_length_maxs = mask.sum(1)[:, 0]
|
| 61 |
+
latent_length_maxs = mask.sum(2)[:, 0]
|
| 62 |
+
|
| 63 |
+
indexes = latent_length_maxs - 1
|
| 64 |
+
|
| 65 |
+
max_neg_val = -1e9
|
| 66 |
+
|
| 67 |
+
for batch_id in range(len(path)):
|
| 68 |
+
index = int(indexes[batch_id].item())
|
| 69 |
+
text_length_max = int(text_length_maxs[batch_id].item())
|
| 70 |
+
latent_length_max = int(latent_length_maxs[batch_id].item())
|
| 71 |
+
|
| 72 |
+
for y in range(text_length_max):
|
| 73 |
+
for x in range(max(0, latent_length_max + y - text_length_max), min(latent_length_max, y + 1)):
|
| 74 |
+
if x == y:
|
| 75 |
+
v_cur = max_neg_val
|
| 76 |
+
else:
|
| 77 |
+
v_cur = log_likelihoods[batch_id, y - 1, x]
|
| 78 |
+
if x == 0:
|
| 79 |
+
if y == 0:
|
| 80 |
+
v_prev = 0.0
|
| 81 |
+
else:
|
| 82 |
+
v_prev = max_neg_val
|
| 83 |
+
else:
|
| 84 |
+
v_prev = log_likelihoods[batch_id, y - 1, x - 1]
|
| 85 |
+
log_likelihoods[batch_id, y, x] += max(v_prev, v_cur)
|
| 86 |
+
|
| 87 |
+
for y in range(text_length_max - 1, -1, -1):
|
| 88 |
+
path[batch_id, y, index] = 1
|
| 89 |
+
if index != 0 and (
|
| 90 |
+
index == y or log_likelihoods[batch_id, y - 1, index] < log_likelihoods[batch_id, y - 1, index - 1]
|
| 91 |
+
):
|
| 92 |
+
index = index - 1
|
| 93 |
+
return path
|
| 94 |
+
|
| 95 |
+
#....................................
|
| 96 |
+
|
| 97 |
+
def slice_segments(self,hidden_states, ids_str, segment_size=4):
|
| 98 |
+
|
| 99 |
+
batch_size, channels, _ = hidden_states.shape
|
| 100 |
+
# 1d tensor containing the indices to keep
|
| 101 |
+
indices = torch.arange(segment_size).to(ids_str.device)
|
| 102 |
+
# extend the indices to match the shape of hidden_states
|
| 103 |
+
indices = indices.view(1, 1, -1).expand(batch_size, channels, -1)
|
| 104 |
+
# offset indices with ids_str
|
| 105 |
+
indices = indices + ids_str.view(-1, 1, 1)
|
| 106 |
+
# gather indices
|
| 107 |
+
output = torch.gather(hidden_states, dim=2, index=indices)
|
| 108 |
+
|
| 109 |
+
return output
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
#....................................
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def rand_slice_segments(self,hidden_states, sample_lengths=None, segment_size=4):
|
| 116 |
+
|
| 117 |
+
batch_size, _, seq_len = hidden_states.size()
|
| 118 |
+
if sample_lengths is None:
|
| 119 |
+
sample_lengths = seq_len
|
| 120 |
+
ids_str_max = sample_lengths - segment_size + 1
|
| 121 |
+
ids_str = (torch.rand([batch_size]).to(device=hidden_states.device) * ids_str_max).to(dtype=torch.long)
|
| 122 |
+
ret = self.slice_segments(hidden_states, ids_str, segment_size)
|
| 123 |
+
|
| 124 |
+
return ret, ids_str
|
| 125 |
+
|
| 126 |
+
#....................................
|
| 127 |
+
|
| 128 |
+
def resize_speaker_embeddings(
|
| 129 |
+
self,
|
| 130 |
+
new_num_speakers: int,
|
| 131 |
+
speaker_embedding_size: Optional[int] = None,
|
| 132 |
+
pad_to_multiple_of: Optional[int] = 2,
|
| 133 |
+
):
|
| 134 |
+
if pad_to_multiple_of is not None:
|
| 135 |
+
new_num_speakers = ((new_num_speakers + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of
|
| 136 |
+
|
| 137 |
+
# first, take care of embed_speaker
|
| 138 |
+
if self.config.num_speakers <= 1:
|
| 139 |
+
if speaker_embedding_size is None:
|
| 140 |
+
raise ValueError(
|
| 141 |
+
"The current model had no previous speaker embedding, but `speaker_embedding_size` is not specified. Pass `speaker_embedding_size` to this method."
|
| 142 |
+
)
|
| 143 |
+
# create new embedding layer
|
| 144 |
+
new_embeddings = nn.Embedding(
|
| 145 |
+
new_num_speakers,
|
| 146 |
+
speaker_embedding_size,
|
| 147 |
+
device=self.device,
|
| 148 |
+
)
|
| 149 |
+
# initialize all new embeddings
|
| 150 |
+
self._init_weights(new_embeddings)
|
| 151 |
+
else:
|
| 152 |
+
new_embeddings = self._get_resized_embeddings(self.embed_speaker, new_num_speakers)
|
| 153 |
+
|
| 154 |
+
self.embed_speaker = new_embeddings
|
| 155 |
+
|
| 156 |
+
# then take care of sub-models
|
| 157 |
+
self.flow.resize_speaker_embeddings(speaker_embedding_size)
|
| 158 |
+
for flow in self.flow.flows:
|
| 159 |
+
self._init_weights(flow.wavenet.cond_layer)
|
| 160 |
+
|
| 161 |
+
self.decoder.resize_speaker_embedding(speaker_embedding_size)
|
| 162 |
+
self._init_weights(self.decoder.cond)
|
| 163 |
+
|
| 164 |
+
self.duration_predictor.resize_speaker_embeddings(speaker_embedding_size)
|
| 165 |
+
self._init_weights(self.duration_predictor.cond)
|
| 166 |
+
|
| 167 |
+
self.posterior_encoder.resize_speaker_embeddings(speaker_embedding_size)
|
| 168 |
+
self._init_weights(self.posterior_encoder.wavenet.cond_layer)
|
| 169 |
+
|
| 170 |
+
self.config.num_speakers = new_num_speakers
|
| 171 |
+
self.config.speaker_embedding_size = speaker_embedding_size
|
| 172 |
+
|
| 173 |
+
#....................................
|
| 174 |
+
|
| 175 |
+
def get_input_embeddings(self):
|
| 176 |
+
return self.text_encoder.get_input_embeddings()
|
| 177 |
+
|
| 178 |
+
#....................................
|
| 179 |
+
|
| 180 |
+
def set_input_embeddings(self, value):
|
| 181 |
+
self.text_encoder.set_input_embeddings(value)
|
| 182 |
+
|
| 183 |
+
#....................................
|
| 184 |
+
|
| 185 |
+
def apply_weight_norm(self):
|
| 186 |
+
self.decoder.apply_weight_norm()
|
| 187 |
+
self.flow.apply_weight_norm()
|
| 188 |
+
self.posterior_encoder.apply_weight_norm()
|
| 189 |
+
|
| 190 |
+
#....................................
|
| 191 |
+
|
| 192 |
+
def remove_weight_norm(self):
|
| 193 |
+
self.decoder.remove_weight_norm()
|
| 194 |
+
self.flow.remove_weight_norm()
|
| 195 |
+
self.posterior_encoder.remove_weight_norm()
|
| 196 |
+
|
| 197 |
+
#....................................
|
| 198 |
+
|
| 199 |
+
def discriminate(self, hidden_states):
|
| 200 |
+
return self.discriminator(hidden_states)
|
| 201 |
+
|
| 202 |
+
#....................................
|
| 203 |
+
|
| 204 |
+
def get_encoder(self):
|
| 205 |
+
return self.text_encoder
|
| 206 |
+
|
| 207 |
+
#....................................
|
| 208 |
+
|
| 209 |
+
def _inference_forward(
|
| 210 |
+
self,
|
| 211 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 212 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 213 |
+
speaker_embeddings: Optional[torch.Tensor] = None,
|
| 214 |
+
output_attentions: Optional[bool] = None,
|
| 215 |
+
output_hidden_states: Optional[bool] = None,
|
| 216 |
+
return_dict: Optional[bool] = None,
|
| 217 |
+
padding_mask: Optional[torch.Tensor] = None,
|
| 218 |
+
):
|
| 219 |
+
text_encoder_output = self.text_encoder(
|
| 220 |
+
input_ids=input_ids,
|
| 221 |
+
padding_mask=padding_mask,
|
| 222 |
+
attention_mask=attention_mask,
|
| 223 |
+
output_attentions=output_attentions,
|
| 224 |
+
output_hidden_states=output_hidden_states,
|
| 225 |
+
return_dict=return_dict,
|
| 226 |
+
)
|
| 227 |
+
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
|
| 228 |
+
hidden_states = hidden_states.transpose(1, 2)
|
| 229 |
+
input_padding_mask = padding_mask.transpose(1, 2)
|
| 230 |
+
|
| 231 |
+
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
|
| 232 |
+
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
|
| 233 |
+
|
| 234 |
+
if self.config.use_stochastic_duration_prediction:
|
| 235 |
+
log_duration = self.duration_predictor(
|
| 236 |
+
hidden_states,
|
| 237 |
+
input_padding_mask,
|
| 238 |
+
speaker_embeddings,
|
| 239 |
+
reverse=True,
|
| 240 |
+
noise_scale=self.noise_scale_duration,
|
| 241 |
+
)
|
| 242 |
+
else:
|
| 243 |
+
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
|
| 244 |
+
|
| 245 |
+
length_scale = 1.0 / self.speaking_rate
|
| 246 |
+
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
|
| 247 |
+
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
# Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
|
| 251 |
+
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
|
| 252 |
+
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
|
| 253 |
+
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
|
| 254 |
+
|
| 255 |
+
# Reconstruct an attention tensor of shape (batch, 1, out_length, in_length)
|
| 256 |
+
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
|
| 257 |
+
batch_size, _, output_length, input_length = attn_mask.shape
|
| 258 |
+
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
|
| 259 |
+
indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
|
| 260 |
+
valid_indices = indices.unsqueeze(0) < cum_duration
|
| 261 |
+
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
|
| 262 |
+
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
|
| 263 |
+
attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask
|
| 264 |
+
|
| 265 |
+
# Expand prior distribution
|
| 266 |
+
prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2)
|
| 267 |
+
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2)
|
| 268 |
+
|
| 269 |
+
prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
|
| 270 |
+
latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
|
| 271 |
+
|
| 272 |
+
spectrogram = latents * output_padding_mask
|
| 273 |
+
return spectrogram
|
| 274 |
+
|
| 275 |
+
def forward(
|
| 276 |
+
self,
|
| 277 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 278 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 279 |
+
speaker_id: Optional[int] = None,
|
| 280 |
+
output_attentions: Optional[bool] = None,
|
| 281 |
+
output_hidden_states: Optional[bool] = None,
|
| 282 |
+
return_dict: Optional[bool] = None,
|
| 283 |
+
labels: Optional[torch.FloatTensor] = None,
|
| 284 |
+
labels_attention_mask: Optional[torch.Tensor] = None,
|
| 285 |
+
monotonic_alignment_function: Optional[Callable] = None,
|
| 286 |
+
) -> Union[Tuple[Any], VitsModelOutput]:
|
| 287 |
+
|
| 288 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 289 |
+
output_hidden_states = (
|
| 290 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 291 |
+
)
|
| 292 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 293 |
+
|
| 294 |
+
monotonic_alignment_function = (
|
| 295 |
+
self.monotonic_align_max_path if monotonic_alignment_function is None else monotonic_alignment_function
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
if attention_mask is not None:
|
| 299 |
+
input_padding_mask = attention_mask.unsqueeze(-1).float()
|
| 300 |
+
else:
|
| 301 |
+
input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()
|
| 302 |
+
|
| 303 |
+
if self.config.num_speakers > 1 and speaker_id is not None:
|
| 304 |
+
if isinstance(speaker_id, int):
|
| 305 |
+
speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device)
|
| 306 |
+
elif isinstance(speaker_id, (list, tuple, np.ndarray)):
|
| 307 |
+
speaker_id = torch.tensor(speaker_id, device=self.device)
|
| 308 |
+
|
| 309 |
+
if not ((0 <= speaker_id).all() and (speaker_id < self.config.num_speakers).all()).item():
|
| 310 |
+
raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.")
|
| 311 |
+
if not (len(speaker_id) == 1 or len(speaker_id == len(input_ids))):
|
| 312 |
+
raise ValueError(
|
| 313 |
+
f"You passed {len(speaker_id)} `speaker_id` but you should either pass one speaker id or `batch_size` `speaker_id`."
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1)
|
| 317 |
+
else:
|
| 318 |
+
speaker_embeddings = None
|
| 319 |
+
|
| 320 |
+
# if inference, return inference forward of VitsModel
|
| 321 |
+
if labels is None:
|
| 322 |
+
return self._inference_forward(
|
| 323 |
+
input_ids,
|
| 324 |
+
attention_mask,
|
| 325 |
+
speaker_embeddings,
|
| 326 |
+
output_attentions,
|
| 327 |
+
output_hidden_states,
|
| 328 |
+
return_dict,
|
| 329 |
+
input_padding_mask,
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
if labels_attention_mask is not None:
|
| 333 |
+
labels_padding_mask = labels_attention_mask.unsqueeze(1).float()
|
| 334 |
+
else:
|
| 335 |
+
labels_attention_mask = torch.ones((labels.shape[0], labels.shape[2])).float().to(self.device)
|
| 336 |
+
labels_padding_mask = labels_attention_mask.unsqueeze(1)
|
| 337 |
+
|
| 338 |
+
text_encoder_output = self.text_encoder(
|
| 339 |
+
input_ids=input_ids,
|
| 340 |
+
padding_mask=input_padding_mask,
|
| 341 |
+
attention_mask=attention_mask,
|
| 342 |
+
output_attentions=output_attentions,
|
| 343 |
+
output_hidden_states=output_hidden_states,
|
| 344 |
+
return_dict=return_dict,
|
| 345 |
+
)
|
| 346 |
+
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
|
| 347 |
+
hidden_states = hidden_states.transpose(1, 2)
|
| 348 |
+
input_padding_mask = input_padding_mask.transpose(1, 2)
|
| 349 |
+
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
|
| 350 |
+
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
|
| 351 |
+
|
| 352 |
+
latents, posterior_means, posterior_log_variances = self.posterior_encoder(
|
| 353 |
+
labels, labels_padding_mask, speaker_embeddings
|
| 354 |
+
)
|
| 355 |
+
prior_latents = self.flow(latents, labels_padding_mask, speaker_embeddings, reverse=False)
|
| 356 |
+
|
| 357 |
+
prior_means, prior_log_variances = prior_means.transpose(1, 2), prior_log_variances.transpose(1, 2)
|
| 358 |
+
with torch.no_grad():
|
| 359 |
+
# negative cross-entropy
|
| 360 |
+
|
| 361 |
+
# [batch_size, d, latent_length]
|
| 362 |
+
prior_variances = torch.exp(-2 * prior_log_variances)
|
| 363 |
+
# [batch_size, 1, latent_length]
|
| 364 |
+
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - prior_log_variances, [1], keepdim=True)
|
| 365 |
+
# [batch_size, text_length, d] x [batch_size, d, latent_length] = [batch_size, text_length, latent_length]
|
| 366 |
+
neg_cent2 = torch.matmul(-0.5 * (prior_latents**2).transpose(1, 2), prior_variances)
|
| 367 |
+
# [batch_size, text_length, d] x [batch_size, d, latent_length] = [batch_size, text_length, latent_length]
|
| 368 |
+
neg_cent3 = torch.matmul(prior_latents.transpose(1, 2), (prior_means * prior_variances))
|
| 369 |
+
# [batch_size, 1, latent_length]
|
| 370 |
+
neg_cent4 = torch.sum(-0.5 * (prior_means**2) * prior_variances, [1], keepdim=True)
|
| 371 |
+
|
| 372 |
+
# [batch_size, text_length, latent_length]
|
| 373 |
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
| 374 |
+
|
| 375 |
+
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(labels_padding_mask, -1)
|
| 376 |
+
|
| 377 |
+
attn = monotonic_alignment_function(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
| 378 |
+
|
| 379 |
+
durations = attn.sum(2)
|
| 380 |
+
|
| 381 |
+
if self.config.use_stochastic_duration_prediction:
|
| 382 |
+
log_duration = self.duration_predictor(
|
| 383 |
+
hidden_states, input_padding_mask, speaker_embeddings, durations=durations, reverse=False
|
| 384 |
+
)
|
| 385 |
+
log_duration = log_duration / torch.sum(input_padding_mask)
|
| 386 |
+
else:
|
| 387 |
+
log_duration_padded = torch.log(durations + 1e-6) * input_padding_mask
|
| 388 |
+
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
|
| 389 |
+
log_duration = torch.sum((log_duration - log_duration_padded) ** 2, [1, 2]) / torch.sum(input_padding_mask)
|
| 390 |
+
|
| 391 |
+
# expand priors
|
| 392 |
+
prior_means = torch.matmul(attn.squeeze(1), prior_means.transpose(1, 2)).transpose(1, 2)
|
| 393 |
+
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances.transpose(1, 2)).transpose(1, 2)
|
| 394 |
+
|
| 395 |
+
label_lengths = labels_attention_mask.sum(dim=1)
|
| 396 |
+
latents_slice, ids_slice = self.rand_slice_segments(latents, label_lengths, segment_size=self.segment_size)
|
| 397 |
+
|
| 398 |
+
waveform = self.decoder(latents_slice, speaker_embeddings)
|
| 399 |
+
|
| 400 |
+
if not return_dict:
|
| 401 |
+
outputs = (
|
| 402 |
+
waveform,
|
| 403 |
+
log_duration,
|
| 404 |
+
attn,
|
| 405 |
+
ids_slice,
|
| 406 |
+
input_padding_mask,
|
| 407 |
+
labels_padding_mask,
|
| 408 |
+
latents,
|
| 409 |
+
prior_latents,
|
| 410 |
+
prior_means,
|
| 411 |
+
prior_log_variances,
|
| 412 |
+
posterior_means,
|
| 413 |
+
posterior_log_variances,
|
| 414 |
+
)
|
| 415 |
+
return outputs
|
| 416 |
+
|
| 417 |
+
return VitsTrainingOutput(
|
| 418 |
+
waveform=waveform,
|
| 419 |
+
log_duration=log_duration,
|
| 420 |
+
attn=attn,
|
| 421 |
+
ids_slice=ids_slice,
|
| 422 |
+
input_padding_mask=input_padding_mask,
|
| 423 |
+
labels_padding_mask=labels_padding_mask,
|
| 424 |
+
latents=latents,
|
| 425 |
+
prior_latents=prior_latents,
|
| 426 |
+
prior_means=prior_means,
|
| 427 |
+
prior_log_variances=prior_log_variances,
|
| 428 |
+
posterior_means=posterior_means,
|
| 429 |
+
posterior_log_variances=posterior_log_variances,
|
| 430 |
+
)
|
| 431 |
+
|