File size: 2,615 Bytes
9c3d10b
c824607
 
 
 
 
 
b8284a1
 
 
 
 
 
 
 
 
 
9c3d10b
b8284a1
 
3fde40c
 
 
 
 
 
 
b8284a1
3fde40c
a5cf614
9c3d10b
3fde40c
 
 
 
 
e363c7d
3fde40c
e363c7d
aa40e0e
167ff63
 
aa40e0e
e363c7d
3fde40c
 
add7b09
 
 
 
aa40e0e
add7b09
 
aa40e0e
add7b09
 
 
 
 
 
aa40e0e
add7b09
 
 
 
aa40e0e
167ff63
aa40e0e
 
167ff63
aa40e0e
add7b09
1536913
add7b09
c3f6c7c
 
3fde40c
e363c7d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import gradio as gr
import sys

sys.path.insert(0, "ASG.API/")
from ASGModels import ASG

ASGAI=ASG(isForm=False)
choices=[
          "Group",
          "Technique",
          "Software"
                              ]
model_choices = gr.Dropdown(
                            choices=choices,
                            label="اختر النموذج",
                            value="Group",
                        )



import gradio as gr

def t2t(text, namn_model):
    if namn_model == "Group":
        out = ASGAI.Group.predictAPI(text)
    elif namn_model == "Technique":
        out = ASGAI.Tec.predictAPI(text)
    else:
        out = ASGAI.Soft.predictAPI(text)
    return str(out)

def t2seq(text, namn_model):
    if namn_model == "Group":
        out = ASGAI.Group.Predict_ALL(text)
    elif namn_model == "Technique":
        out = ASGAI.Tec.Predict_ALL(text)
    else:
        out = ASGAI.Soft.Predict_ALL(text)
    return str(out)
def echo(message, history):
    text=t2seq(message,"Group")
    return text


# Use Blocks
with gr.Blocks() as demo:
    with gr.Row():
        with gr.Tab("Thread Base"):
            gr.Markdown("### Thread Base")
            with gr.Row():
           
                with gr.Tab("T2T"):
                        text_input = gr.Textbox(label="Input Text")
                        model_choices = gr.Dropdown(choices=["Group", "Technique", "Soft"], label="Model",value="Group",)
                        text_output = gr.Textbox(label="Output")
                        submit_btn = gr.Button("Submit")
                        submit_btn.click(fn=t2t, inputs=[text_input, model_choices], outputs=text_output)
                    
                with gr.Tab("T2Seq"):
                        text_input_seq = gr.Textbox(label="Input Text")
                        model_choices_seq = gr.Dropdown(choices=["Group", "Technique", "Soft"], label="Model",value="Group",)
                        text_output_seq = gr.Textbox(label="Output")
                        submit_btn_seq = gr.Button("Submit")
                        submit_btn_seq.click(fn=t2seq, inputs=[text_input_seq, model_choices_seq], outputs=text_output_seq)

                with gr.Tab("T2Sinaro"):
                    model_choices_seq1 = gr.Dropdown(choices=["Group", "Technique", "Soft"], label="Model",value="Group",)
                    gr.ChatInterface(fn=echo, examples=["hello", "hola", "merhaba"], title="Echo Bot")
                    
                    

                    
        with gr.Tab("Stute Base"):
                gr.Markdown("### Stute Base")

demo.launch()

# demo.launch()