Spaces:
Sleeping
Sleeping
File size: 12,366 Bytes
273cd6b 712a04d 6cc4283 973c041 21c61c8 973c041 21c61c8 973c041 d65ec35 973c041 479acdd 233814f e6bbc72 2a84d5f e6bbc72 1318041 e6bbc72 973c041 4e497b1 973c041 9bba678 973c041 bc4cee8 d65ec35 45416f5 2abe848 bc4cee8 21c61c8 2abe848 a740b3f 2116406 a740b3f 696ac95 712a04d e897a8d 712a04d 479acdd 712a04d 273cd6b 6cc4283 f1db6b0 6cc4283 6882990 6cc4283 edc1919 27b9232 f1db6b0 d28f8b7 6bdcbf1 d28f8b7 9ab3574 d873b1b d28f8b7 4e497b1 28534de 4e497b1 d873b1b 83ec555 d873b1b 28534de ef68d30 6bdcbf1 31b6072 6bdcbf1 9ab3574 76d6781 45416f5 9ab3574 45416f5 9ab3574 7cfa1ec 7f5dd13 9ab3574 6882990 9ab3574 31b6072 45416f5 9ab3574 bba3493 9ab3574 eef1809 973c041 db8cb05 973c041 d873b1b 83ec555 d873b1b db8cb05 973c041 d873b1b 973c041 368a410 8fc7059 9ab3574 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import os
import numpy as np
import gradio as gr
import requests
from genai_chat_ai import AI,create_chat_session
import torch
from typing import Any, Callable, Optional, Tuple, Union,Iterator
import numpy as np
import torch.nn as nn # Import the missing module
import noisereduce as nr
def remove_noise_nr(audio_data,sr=16000):
"""يزيل الضوضاء باستخدام مكتبة noisereduce."""
reduced_noise = nr.reduce_noise(y=audio_data, sr=sr)
return reduced_noise
def _inference_forward_stream(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
speaker_embeddings: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
padding_mask: Optional[torch.Tensor] = None,
chunk_size: int = 32, # Chunk size for streaming output
) -> Iterator[torch.Tensor]:
"""Generates speech waveforms in a streaming fashion."""
if attention_mask is not None:
padding_mask = attention_mask.unsqueeze(-1).float()
else:
padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()
text_encoder_output = self.text_encoder(
input_ids=input_ids,
padding_mask=padding_mask,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
hidden_states = hidden_states.transpose(1, 2)
input_padding_mask = padding_mask.transpose(1, 2)
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
if self.config.use_stochastic_duration_prediction:
log_duration = self.duration_predictor(
hidden_states,
input_padding_mask,
speaker_embeddings,
reverse=True,
noise_scale=self.noise_scale_duration,
)
else:
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
length_scale = 1.0 / self.speaking_rate
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
# Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
# Reconstruct an attention tensor of shape (batch, 1, out_length, in_length)
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
batch_size, _, output_length, input_length = attn_mask.shape
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
valid_indices = indices.unsqueeze(0) < cum_duration
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask
# Expand prior distribution
prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2)
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2)
prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
spectrogram = latents * output_padding_mask
for i in range(0, spectrogram.size(-1), chunk_size):
with torch.no_grad():
wav=self.decoder(spectrogram[:,:,i : i + chunk_size] ,speaker_embeddings)
yield wav.squeeze().cpu().numpy()
api_key = os.environ.get("Id_mode_vits")
headers = {"Authorization": f"Bearer {api_key}"}
from transformers import AutoTokenizer,VitsModel
import torch
models= {}
tokenizer = AutoTokenizer.from_pretrained("asg2024/vits-ar-sa-huba",token=api_key)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def get_model(name_model):
global models
if name_model in models:
return models[name_model]
models[name_model]=VitsModel.from_pretrained(name_model,token=api_key).to(device)
return models[name_model]
def genrate_speech(text,name_model):
inputs=tokenizer(text,return_tensors="pt")
model=get_model(name_model)
with torch.no_grad():
wav=model(
input_ids= inputs.input_ids.to(device),
attention_mask=inputs.attention_mask.to(device),
speaker_id=0
).waveform.cpu().numpy().reshape(-1)
return model.config.sampling_rate,wav
def generate_audio(text,name_model,speaker_id=None):
inputs = tokenizer(text, return_tensors="pt")#.input_ids
speaker_embeddings = None
model=get_model(name_model)
#torch.cuda.empty_cache()
with torch.no_grad():
for chunk in _inference_forward_stream(model,input_ids=inputs.input_ids,attention_mask=inputs.attention_mask,speaker_embeddings= speaker_embeddings,chunk_size=256):
yield 16000,chunk#.squeeze().cpu().numpy()#.astype(np.int16).tobytes()
def generate_audio_ai(text,name_model):
text_answer = get_answer_ai(text)
text_answer = remove_extra_spaces(text_answer)
inputs = tokenizer(text_answer, return_tensors="pt")#.input_ids
speaker_embeddings = None
model=get_model(name_model)
#torch.cuda.empty_cache()
with torch.no_grad():
for chunk in _inference_forward_stream(model,input_ids=inputs.input_ids,attention_mask=inputs.attention_mask,speaker_embeddings= speaker_embeddings,chunk_size=256):
yield 16000,remove_noise_nr(chunk)#.cpu().numpy().squeeze()#.astype(np.int16).tobytes()
# yield generate_audio(text_answer,name_model)
def remove_extra_spaces(text):
"""
Removes extra spaces between words in a string.
Args:
text: The string to process.
Returns:
The string with extra spaces removed.
"""
return ' '.join(text.split())
def query(text,API_URL):
payload={"inputs": text}
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
def get_answer_ai(text):
global AI
try:
response = AI.send_message(text)
return response.text
except :
AI=create_chat_session()
response = AI.send_message(text)
return response.text
chat_history = [] # متغير لتخزين سجل المحادثة
def chatbot_fn(input_text, input_audio):
global chat_history
if input_text:
chat_history.append((input_text, None)) # إضافة رسالة المستخدم
response_text = get_answer_ai(input_text)
response_audio = genrate_speech(response_text,'asg2024/vits-ar-sa-huba')
elif input_audio:
pass
# chat_history.append((None, input_audio)) # إضافة رسالة صوتية للمستخدم
# input_text = convert_speech_to_text(input_audio)
# response_text = model.generate_response(input_text, chat_history)
# response_audio = convert_text_to_speech(response_text)
chat_history.append((None, response_audio)) # إضافة رد البوت
return chat_history
with gr.Blocks() as demo: # Use gr.Blocks to wrap the entire interface
with gr.Tab("ChatBot "):
chatbot = gr.Chatbot(label="محادثة")
with gr.Row():
txt = gr.Textbox(label="أدخل رسالتك")
audio = gr.Audio(sources="microphone", type="filepath")
txt.change(chatbot_fn, [txt, audio], chatbot)
audio.change(chatbot_fn, [txt, audio], chatbot)
with gr.Tab("Chat AI "):
gr.Markdown("## AI: محادثة صوتية بالذكاء الاصطناعي باللهجة السعودية")
with gr.Row(): # Arrange input/output components side-by-side
with gr.Column():
text_input = gr.Textbox(label="أدخل أي نص")
with gr.Column():
model_choices = gr.Dropdown(
choices=[
"asg2024/vits-ar-sa",
"asg2024/vits-ar-sa-huba",
"asg2024/vits-ar-sa-ms",
"asg2024/vits-ar-sa-magd",
"asg2024/vits-ar-sa-fahd",
],
label="اختر النموذج",
value="asg2024/vits-ar-sa-huba",
)
with gr.Row():
btn = gr.Button("إرسال")
btn_ai_only = gr.Button("توليد رد الذكاء الاصطناعي فقط")
with gr.Row():
user_audio = gr.Audio(label="صوت المدخل")
ai_audio = gr.Audio(label="رد AI الصوتي")
ai_text = gr.Textbox(label="رد AI النصي")
ai_audio2 = gr.Audio(label="2رد AI الصوتي",streaming=True)
# Use a single button to trigger both functionalities
def process_audio(text, model_choice, generate_user_audio=True):
API_URL = f"https://api-inference.huggingface.co/models/{model_choice}"
text_answer = get_answer_ai(text)
text_answer = remove_extra_spaces(text_answer)
data_ai = genrate_speech(text_answer,model_choice)#query(text_answer, API_URL)
if generate_user_audio: # Generate user audio if needed
data_user =genrate_speech(text,model_choice)# query(text, API_URL)
return data_user, data_ai, text_answer
else:
return data_ai # Return None for user_audio
btn.click(
process_audio, # Call the combined function
inputs=[text_input, model_choices],
outputs=[user_audio, ai_audio, ai_text],
)
# Additional button to generate only AI audio
btn_ai_only.click(
generate_audio_ai,
inputs=[text_input, model_choices],
outputs=[ai_audio2],
)
with gr.Tab("Live "):
gr.Markdown("## VITS: تحويل النص إلى كلام")
with gr.Row():
speaker_id_input = gr.Number(label="معرّف المتحدث (اختياري)", interactive=True)
with gr.Column():
model_choices2 = gr.Dropdown(
choices=[
"asg2024/vits-ar-sa",
"asg2024/vits-ar-sa-huba",
"asg2024/vits-ar-sa-ms",
"asg2024/vits-ar-sa-magd",
"asg2024/vits-ar-sa-fahd",
],
label="اختر النموذج",
value="asg2024/vits-ar-sa-huba",
)
text_input = gr.Textbox(label="أدخل النص هنا")
generate_button = gr.Button("توليد وتشغيل الصوت")
audio_player = gr.Audio(label="أ audio",streaming=True)
# Update the event binding
generate_button.click(generate_audio, inputs=[text_input,model_choices2], outputs=audio_player)
if __name__ == "__main__":
demo.launch()
|