wavesoumen commited on
Commit
92ae837
·
verified ·
1 Parent(s): 9f1cb3e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +110 -0
app.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, T5ForConditionalGeneration, T5Tokenizer
3
+ import nltk
4
+ import torch
5
+ from textblob import TextBlob
6
+ from nltk.corpus import stopwords
7
+ from nltk.tokenize import word_tokenize
8
+
9
+ nltk.download('punkt')
10
+ nltk.download('averaged_perceptron_tagger')
11
+ nltk.download('stopwords')
12
+
13
+ # Load models and tokenizers
14
+ tag_tokenizer = AutoTokenizer.from_pretrained("fabiochiu/t5-base-tag-generation")
15
+ tag_model = AutoModelForSeq2SeqLM.from_pretrained("fabiochiu/t5-base-tag-generation")
16
+
17
+ summary_model_name = 'utrobinmv/t5_summary_en_ru_zh_base_2048'
18
+ summary_model = T5ForConditionalGeneration.from_pretrained(summary_model_name)
19
+ summary_tokenizer = T5Tokenizer.from_pretrained(summary_model_name)
20
+
21
+ # Function to generate tags
22
+ def generate_tags(text):
23
+ with torch.no_grad():
24
+ inputs = tag_tokenizer(text, max_length=256, truncation=True, return_tensors="pt")
25
+ output = tag_model.generate(**inputs, num_beams=8, do_sample=True, min_length=10, max_length=64, num_return_sequences=1)
26
+ decoded_output = tag_tokenizer.batch_decode(output, skip_special_tokens=True)[0]
27
+ tags = list(set(decoded_output.strip().split(", ")))
28
+ return tags
29
+
30
+ # Function to generate summaries
31
+ def generate_summary(text, prefix):
32
+ src_text = prefix + text
33
+ input_ids = summary_tokenizer(src_text, return_tensors="pt")
34
+ generated_tokens = summary_model.generate(**input_ids)
35
+ result = summary_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
36
+ return result[0]
37
+
38
+ # Function to extract keywords and generate hashtags
39
+ def extract_keywords(content):
40
+ text = content.lower()
41
+ sentences = nltk.sent_tokenize(text)
42
+ keywords = []
43
+ for sentence in sentences:
44
+ words = nltk.word_tokenize(sentence)
45
+ tags = nltk.pos_tag(words)
46
+ for word, tag in tags:
47
+ if tag.startswith('NN'):
48
+ keywords.append(word)
49
+ return keywords
50
+
51
+ def generate_hashtags(content, max_hashtags=10):
52
+ keywords = extract_keywords(content)
53
+ hashtags = []
54
+ for keyword in keywords:
55
+ hashtag = "#" + keyword
56
+ if len(hashtag) <= 20:
57
+ hashtags.append(hashtag)
58
+ return hashtags[:max_hashtags]
59
+
60
+ # Function to extract point of view
61
+ def extract_point_of_view(text):
62
+ stop_words = set(stopwords.words('english'))
63
+ words = word_tokenize(str(text))
64
+ filtered_words = [word for word in words if word.casefold() not in stop_words]
65
+ text = ' '.join(filtered_words)
66
+
67
+ blob = TextBlob(text)
68
+ polarity = blob.sentiment.polarity
69
+ subjectivity = blob.sentiment.subjectivity
70
+
71
+ if polarity > 0.5:
72
+ point_of_view = "Positive"
73
+ elif polarity < -0.5:
74
+ point_of_view = "Negative"
75
+ else:
76
+ point_of_view = "Neutral"
77
+
78
+ return point_of_view
79
+
80
+ # Streamlit application
81
+ st.title("Text Analysis Application")
82
+
83
+ text = st.text_area("Enter your text here:")
84
+
85
+ if st.button("Analyze"):
86
+ if text:
87
+ # Generate tags
88
+ tags = generate_tags(text)
89
+ st.subheader("Generated Tags")
90
+ st.write(tags)
91
+
92
+ # Generate summaries
93
+ summary1 = generate_summary(text, 'summary: ')
94
+ summary2 = generate_summary(text, 'summary brief: ')
95
+ st.subheader("Summary 1")
96
+ st.write(summary1)
97
+ st.subheader("Summary 2")
98
+ st.write(summary2)
99
+
100
+ # Generate hashtags
101
+ hashtags = generate_hashtags(text)
102
+ st.subheader("Generated Hashtags")
103
+ st.write(hashtags)
104
+
105
+ # Extract point of view
106
+ point_of_view = extract_point_of_view(text)
107
+ st.subheader("Point of View")
108
+ st.write(point_of_view)
109
+ else:
110
+ st.warning("Please enter text to analyze.")