File size: 12,102 Bytes
07cfdaf
 
 
 
 
 
 
 
 
 
 
14e2b9a
07cfdaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14e2b9a
 
 
 
 
07cfdaf
 
 
 
 
 
 
 
 
 
14e2b9a
07cfdaf
 
 
 
 
14e2b9a
07cfdaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14e2b9a
07cfdaf
 
 
 
14e2b9a
07cfdaf
 
14e2b9a
07cfdaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14e2b9a
 
 
07cfdaf
 
 
 
14e2b9a
07cfdaf
 
 
 
 
14e2b9a
07cfdaf
 
 
 
 
 
 
 
14e2b9a
 
 
07cfdaf
 
 
 
 
 
 
 
 
 
14e2b9a
07cfdaf
 
 
 
14e2b9a
 
 
 
07cfdaf
 
 
 
 
 
14e2b9a
 
 
07cfdaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14e2b9a
07cfdaf
 
 
 
 
 
 
 
 
 
 
 
6e4d5c2
07cfdaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14e2b9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07cfdaf
 
 
 
 
14e2b9a
07cfdaf
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import os
import requests
import time
import threading
import uuid
import base64
from pathlib import Path
from dotenv import load_dotenv
import gradio as gr
import random
import torch
import io
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoTokenizer, AutoModelForSequenceClassification

load_dotenv()
API_KEY = os.getenv("WAVESPEED_API_KEY")
if not API_KEY:
    raise ValueError("WAVESPEED_API_KEY is not set in environment variables")

MODEL_URL = "TostAI/nsfw-text-detection-large"
CLASS_NAMES = {0: "✅ SAFE", 1: "⚠️ QUESTIONABLE", 2: "🚫 UNSAFE"}

try:
    tokenizer = AutoTokenizer.from_pretrained(MODEL_URL)
    model = AutoModelForSequenceClassification.from_pretrained(MODEL_URL)
except Exception as e:
    raise RuntimeError(f"Failed to load safety model: {str(e)}")


class SessionManager:
    _instances = {}
    _lock = threading.Lock()

    @classmethod
    def get_session(cls, session_id):
        with cls._lock:
            if session_id not in cls._instances:
                cls._instances[session_id] = {
                    'count': 0,
                    'history': [],
                    'last_active': time.time()
                }
            return cls._instances[session_id]

    @classmethod
    def cleanup_sessions(cls):
        with cls._lock:
            now = time.time()
            expired = [
                k for k, v in cls._instances.items()
                if now - v['last_active'] > 3600
            ]
            for k in expired:
                del cls._instances[k]


class RateLimiter:

    def __init__(self):
        self.clients = {}
        self.lock = threading.Lock()

    def check(self, client_id):
        with self.lock:
            now = time.time()
            if client_id not in self.clients:
                self.clients[client_id] = {'count': 1, 'reset': now + 3600}
                return True
            if now > self.clients[client_id]['reset']:
                self.clients[client_id] = {'count': 1, 'reset': now + 3600}
                return True
            if self.clients[client_id]['count'] >= 20:
                return False
            self.clients[client_id]['count'] += 1
            return True


session_manager = SessionManager()
rate_limiter = RateLimiter()


def create_error_image(message):
    img = Image.new("RGB", (512, 512), "#ffdddd")
    try:
        font = ImageFont.truetype("arial.ttf", 24)
    except:
        font = ImageFont.load_default()
    draw = ImageDraw.Draw(img)
    text = f"Error: {message[:60]}..." if len(message) > 60 else message
    draw.text((50, 200), text, fill="#ff0000", font=font)
    return img


@torch.no_grad()
def classify_prompt(prompt):
    inputs = tokenizer(prompt,
                       return_tensors="pt",
                       truncation=True,
                       max_length=512)
    outputs = model(**inputs)
    return torch.argmax(outputs.logits).item()


def image_to_base64(file_path):
    with open(file_path, "rb") as f:
        return base64.b64encode(f.read()).decode()


def decode_base64_to_image(base64_str):
    image_data = base64.b64decode(base64_str)
    return Image.open(io.BytesIO(image_data))


def generate_image(image_file,
                   prompt,
                   seed,
                   session_id,
                   enable_safety_checker=True):
    try:
        if enable_safety_checker:
            safety_level = classify_prompt(prompt)
            if safety_level != 0:
                error_img = create_error_image(CLASS_NAMES[safety_level])
                yield f"❌ Blocked: {CLASS_NAMES[safety_level]}", error_img, "", None
                return

        if not rate_limiter.check(session_id):
            error_img = create_error_image(
                "Hourly limit exceeded (20 requests)")
            yield "❌ Too many requests, please try again later", error_img, "", None
            return

        session = session_manager.get_session(session_id)
        session['last_active'] = time.time()
        session['count'] += 1

        error_messages = []
        if not image_file:
            error_messages.append("Please upload an image file")
        elif not Path(image_file).exists():
            error_messages.append("File does not exist")
        if not prompt.strip():
            error_messages.append("Prompt cannot be empty")
        if error_messages:
            error_img = create_error_image(" | ".join(error_messages))
            yield "❌ Input validation failed", error_img, "", None
            return

        try:
            base64_image = image_to_base64(image_file)
            input_image = decode_base64_to_image(base64_image)
        except Exception as e:
            error_img = create_error_image(f"File processing failed: {str(e)}")
            yield "❌ File processing failed", error_img, "", None
            return

        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {API_KEY}",
        }
        payload = {
            "enable_safety_checker": enable_safety_checker,
            "image": base64_image,
            "prompt": prompt,
            "seed": int(seed) if seed != -1 else random.randint(0, 999999)
        }

        response = requests.post(
            "https://api.wavespeed.ai/api/v3/wavespeed-ai/flux-kontext-dev-ultra-fast",
            headers=headers,
            json=payload,
            timeout=30)
        response.raise_for_status()

        request_id = response.json()["data"]["id"]
        result_url = f"https://api.wavespeed.ai/api/v3/predictions/{request_id}/result"
        start_time = time.time()

        for _ in range(60):
            time.sleep(1)
            resp = requests.get(result_url, headers=headers)
            resp.raise_for_status()

            data = resp.json()["data"]
            status = data["status"]

            if status == "completed":
                elapsed = time.time() - start_time
                output_url = data["outputs"][0]
                session["history"].append(output_url)
                yield f"🎉 Generation successful! Time taken {elapsed:.1f}s", output_url, output_url, update_recent_gallery(prompt, input_image, output_url)
                return
            elif status == "failed":
                raise Exception(data.get("error", "Unknown error"))
            else:
                yield f"⏳ Current status: {status.capitalize()}...", None, None, None

        raise Exception("Generation timed out")

    except Exception as e:
        error_img = create_error_image(str(e))
        yield f"❌ Generation failed: {str(e)}", error_img, "", None


def cleanup_task():
    while True:
        session_manager.cleanup_sessions()
        time.sleep(3600)


# Store recent generations
recent_generations = []

with gr.Blocks(theme=gr.themes.Soft(),
               css="""
    .status-box { padding: 10px; border-radius: 5px; margin: 5px; }
    .safe { background: #e8f5e9; border: 1px solid #a5d6a7; }
    .warning { background: #fff3e0; border: 1px solid #ffcc80; }
    .error { background: #ffebee; border: 1px solid #ef9a9a; }
    """) as app:

    session_id = gr.State(str(uuid.uuid4()))

    gr.Markdown("# 🖼️FLUX Kontext Dev Ultra Fast Live")
    gr.Markdown(
        "FLUX Kontext Dev is a new SOTA image editing model published by Black Forest Labs. We have deployed it on [WaveSpeedAI](https://wavespeed.ai/) for ultra-fast image editing. You can use it to edit images in various styles, add objects, or even change the mood of the image. It supports both text prompts and image inputs."
    )
    gr.Markdown(
        "- [FLUX Kontext Dev on WaveSpeedAI](https://wavespeed.ai/models/wavespeed-ai/flux-kontext-dev)"
        "- [FLUX Kontext Dev LoRA on WaveSpeedAI](https://wavespeed.ai/models/wavespeed-ai/flux-kontext-dev-lora)"
        "- [FLUX Kontext Dev Ultra Fast on WaveSpeedAI](https://wavespeed.ai/models/wavespeed-ai/flux-kontext-dev-ultra-fast)"
        "- [FLUX Kontext Dev LoRA Ultra Fast on WaveSpeedAI](https://wavespeed.ai/models/wavespeed-ai/flux-kontext-dev-lora-ultra-fast)"
    )
    gr.Markdown(
    )

    with gr.Row():
        with gr.Column(scale=1):
            prompt = gr.Textbox(label="Prompt",
                                placeholder="Please enter your prompt...",
                                lines=3)
            image_file = gr.Image(label="Upload Image",
                                  type="filepath",
                                  sources=["upload"],
                                  interactive=True,
                                  image_mode="RGB")
            seed = gr.Number(label="seed",
                             value=-1,
                             minimum=-1,
                             maximum=999999,
                             step=1)
            random_btn = gr.Button("random🎲seed", variant="secondary")
            enable_safety = gr.Checkbox(label="🔒 Enable Safety Checker",
                                        value=True,
                                        interactive=False)
        with gr.Column(scale=1):
            status = gr.Textbox(label="Status", elem_classes=["status-box"])
            output_image = gr.Image(label="Generated Result")
            output_url = gr.Textbox(label="Image URL",
                                    interactive=True,
                                    visible=False)
            submit_btn = gr.Button("Start Generation", variant="primary")
    gr.Examples(
        examples=[
            [
                "Convert the image into Claymation style.",
                "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/penguin.png"
            ],
            [
                "Convert the image into Ghibli style.",
                "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flux_ip_adapter_input.jpg"
            ],
            [
                "Add sunglasses to the face of the girl.",
                "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_girl2.png"
            ],
            # [
            #     'Convert the image into an ink sketch style.',
            #     "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
            # ],
            # [
            #     'Add a butterfly to the scene.',
            #     "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_depth_result.png"
            # ]
        ],
        inputs=[prompt, image_file],
        label="Examples")

    with gr.Accordion("Recent Generations (last 16)", open=False):
        recent_gallery = gr.Gallery(label="Prompt and Output",
                                    columns=3,
                                    interactive=False)

    def get_recent_gallery_items():
        gallery_items = []
        for r in reversed(recent_generations):
            if any(x is None for x in r.values()):
                continue
            gallery_items.append((r["input"], f"Input: {r['prompt']}"))
            gallery_items.append((r["output"], f"Output: {r['prompt']}"))
        return gr.update(value=gallery_items)

    def update_recent_gallery(prompt, input_image, output_image):
        recent_generations.append({
            "prompt": prompt,
            "input": input_image,
            "output": output_image,
        })
        if len(recent_generations) > 16:
            recent_generations.pop(0)
        return get_recent_gallery_items()

    random_btn.click(fn=lambda: random.randint(0, 999999), outputs=seed)

    submit_btn.click(
        generate_image,
        inputs=[image_file, prompt, seed, session_id, enable_safety],
        outputs=[status, output_image, output_url, recent_gallery],
        api_name=False,
    )

if __name__ == "__main__":
    threading.Thread(target=cleanup_task, daemon=True).start()
    app.queue(max_size=8).launch(
        server_name="0.0.0.0",
        share=False,
    )