File size: 12,102 Bytes
07cfdaf 14e2b9a 07cfdaf 14e2b9a 07cfdaf 14e2b9a 07cfdaf 14e2b9a 07cfdaf 14e2b9a 07cfdaf 14e2b9a 07cfdaf 14e2b9a 07cfdaf 14e2b9a 07cfdaf 14e2b9a 07cfdaf 14e2b9a 07cfdaf 14e2b9a 07cfdaf 14e2b9a 07cfdaf 14e2b9a 07cfdaf 14e2b9a 07cfdaf 14e2b9a 07cfdaf 6e4d5c2 07cfdaf 14e2b9a 07cfdaf 14e2b9a 07cfdaf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import os
import requests
import time
import threading
import uuid
import base64
from pathlib import Path
from dotenv import load_dotenv
import gradio as gr
import random
import torch
import io
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoTokenizer, AutoModelForSequenceClassification
load_dotenv()
API_KEY = os.getenv("WAVESPEED_API_KEY")
if not API_KEY:
raise ValueError("WAVESPEED_API_KEY is not set in environment variables")
MODEL_URL = "TostAI/nsfw-text-detection-large"
CLASS_NAMES = {0: "✅ SAFE", 1: "⚠️ QUESTIONABLE", 2: "🚫 UNSAFE"}
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_URL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_URL)
except Exception as e:
raise RuntimeError(f"Failed to load safety model: {str(e)}")
class SessionManager:
_instances = {}
_lock = threading.Lock()
@classmethod
def get_session(cls, session_id):
with cls._lock:
if session_id not in cls._instances:
cls._instances[session_id] = {
'count': 0,
'history': [],
'last_active': time.time()
}
return cls._instances[session_id]
@classmethod
def cleanup_sessions(cls):
with cls._lock:
now = time.time()
expired = [
k for k, v in cls._instances.items()
if now - v['last_active'] > 3600
]
for k in expired:
del cls._instances[k]
class RateLimiter:
def __init__(self):
self.clients = {}
self.lock = threading.Lock()
def check(self, client_id):
with self.lock:
now = time.time()
if client_id not in self.clients:
self.clients[client_id] = {'count': 1, 'reset': now + 3600}
return True
if now > self.clients[client_id]['reset']:
self.clients[client_id] = {'count': 1, 'reset': now + 3600}
return True
if self.clients[client_id]['count'] >= 20:
return False
self.clients[client_id]['count'] += 1
return True
session_manager = SessionManager()
rate_limiter = RateLimiter()
def create_error_image(message):
img = Image.new("RGB", (512, 512), "#ffdddd")
try:
font = ImageFont.truetype("arial.ttf", 24)
except:
font = ImageFont.load_default()
draw = ImageDraw.Draw(img)
text = f"Error: {message[:60]}..." if len(message) > 60 else message
draw.text((50, 200), text, fill="#ff0000", font=font)
return img
@torch.no_grad()
def classify_prompt(prompt):
inputs = tokenizer(prompt,
return_tensors="pt",
truncation=True,
max_length=512)
outputs = model(**inputs)
return torch.argmax(outputs.logits).item()
def image_to_base64(file_path):
with open(file_path, "rb") as f:
return base64.b64encode(f.read()).decode()
def decode_base64_to_image(base64_str):
image_data = base64.b64decode(base64_str)
return Image.open(io.BytesIO(image_data))
def generate_image(image_file,
prompt,
seed,
session_id,
enable_safety_checker=True):
try:
if enable_safety_checker:
safety_level = classify_prompt(prompt)
if safety_level != 0:
error_img = create_error_image(CLASS_NAMES[safety_level])
yield f"❌ Blocked: {CLASS_NAMES[safety_level]}", error_img, "", None
return
if not rate_limiter.check(session_id):
error_img = create_error_image(
"Hourly limit exceeded (20 requests)")
yield "❌ Too many requests, please try again later", error_img, "", None
return
session = session_manager.get_session(session_id)
session['last_active'] = time.time()
session['count'] += 1
error_messages = []
if not image_file:
error_messages.append("Please upload an image file")
elif not Path(image_file).exists():
error_messages.append("File does not exist")
if not prompt.strip():
error_messages.append("Prompt cannot be empty")
if error_messages:
error_img = create_error_image(" | ".join(error_messages))
yield "❌ Input validation failed", error_img, "", None
return
try:
base64_image = image_to_base64(image_file)
input_image = decode_base64_to_image(base64_image)
except Exception as e:
error_img = create_error_image(f"File processing failed: {str(e)}")
yield "❌ File processing failed", error_img, "", None
return
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_KEY}",
}
payload = {
"enable_safety_checker": enable_safety_checker,
"image": base64_image,
"prompt": prompt,
"seed": int(seed) if seed != -1 else random.randint(0, 999999)
}
response = requests.post(
"https://api.wavespeed.ai/api/v3/wavespeed-ai/flux-kontext-dev-ultra-fast",
headers=headers,
json=payload,
timeout=30)
response.raise_for_status()
request_id = response.json()["data"]["id"]
result_url = f"https://api.wavespeed.ai/api/v3/predictions/{request_id}/result"
start_time = time.time()
for _ in range(60):
time.sleep(1)
resp = requests.get(result_url, headers=headers)
resp.raise_for_status()
data = resp.json()["data"]
status = data["status"]
if status == "completed":
elapsed = time.time() - start_time
output_url = data["outputs"][0]
session["history"].append(output_url)
yield f"🎉 Generation successful! Time taken {elapsed:.1f}s", output_url, output_url, update_recent_gallery(prompt, input_image, output_url)
return
elif status == "failed":
raise Exception(data.get("error", "Unknown error"))
else:
yield f"⏳ Current status: {status.capitalize()}...", None, None, None
raise Exception("Generation timed out")
except Exception as e:
error_img = create_error_image(str(e))
yield f"❌ Generation failed: {str(e)}", error_img, "", None
def cleanup_task():
while True:
session_manager.cleanup_sessions()
time.sleep(3600)
# Store recent generations
recent_generations = []
with gr.Blocks(theme=gr.themes.Soft(),
css="""
.status-box { padding: 10px; border-radius: 5px; margin: 5px; }
.safe { background: #e8f5e9; border: 1px solid #a5d6a7; }
.warning { background: #fff3e0; border: 1px solid #ffcc80; }
.error { background: #ffebee; border: 1px solid #ef9a9a; }
""") as app:
session_id = gr.State(str(uuid.uuid4()))
gr.Markdown("# 🖼️FLUX Kontext Dev Ultra Fast Live")
gr.Markdown(
"FLUX Kontext Dev is a new SOTA image editing model published by Black Forest Labs. We have deployed it on [WaveSpeedAI](https://wavespeed.ai/) for ultra-fast image editing. You can use it to edit images in various styles, add objects, or even change the mood of the image. It supports both text prompts and image inputs."
)
gr.Markdown(
"- [FLUX Kontext Dev on WaveSpeedAI](https://wavespeed.ai/models/wavespeed-ai/flux-kontext-dev)"
"- [FLUX Kontext Dev LoRA on WaveSpeedAI](https://wavespeed.ai/models/wavespeed-ai/flux-kontext-dev-lora)"
"- [FLUX Kontext Dev Ultra Fast on WaveSpeedAI](https://wavespeed.ai/models/wavespeed-ai/flux-kontext-dev-ultra-fast)"
"- [FLUX Kontext Dev LoRA Ultra Fast on WaveSpeedAI](https://wavespeed.ai/models/wavespeed-ai/flux-kontext-dev-lora-ultra-fast)"
)
gr.Markdown(
)
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label="Prompt",
placeholder="Please enter your prompt...",
lines=3)
image_file = gr.Image(label="Upload Image",
type="filepath",
sources=["upload"],
interactive=True,
image_mode="RGB")
seed = gr.Number(label="seed",
value=-1,
minimum=-1,
maximum=999999,
step=1)
random_btn = gr.Button("random🎲seed", variant="secondary")
enable_safety = gr.Checkbox(label="🔒 Enable Safety Checker",
value=True,
interactive=False)
with gr.Column(scale=1):
status = gr.Textbox(label="Status", elem_classes=["status-box"])
output_image = gr.Image(label="Generated Result")
output_url = gr.Textbox(label="Image URL",
interactive=True,
visible=False)
submit_btn = gr.Button("Start Generation", variant="primary")
gr.Examples(
examples=[
[
"Convert the image into Claymation style.",
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/penguin.png"
],
[
"Convert the image into Ghibli style.",
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flux_ip_adapter_input.jpg"
],
[
"Add sunglasses to the face of the girl.",
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_girl2.png"
],
# [
# 'Convert the image into an ink sketch style.',
# "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
# ],
# [
# 'Add a butterfly to the scene.',
# "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_depth_result.png"
# ]
],
inputs=[prompt, image_file],
label="Examples")
with gr.Accordion("Recent Generations (last 16)", open=False):
recent_gallery = gr.Gallery(label="Prompt and Output",
columns=3,
interactive=False)
def get_recent_gallery_items():
gallery_items = []
for r in reversed(recent_generations):
if any(x is None for x in r.values()):
continue
gallery_items.append((r["input"], f"Input: {r['prompt']}"))
gallery_items.append((r["output"], f"Output: {r['prompt']}"))
return gr.update(value=gallery_items)
def update_recent_gallery(prompt, input_image, output_image):
recent_generations.append({
"prompt": prompt,
"input": input_image,
"output": output_image,
})
if len(recent_generations) > 16:
recent_generations.pop(0)
return get_recent_gallery_items()
random_btn.click(fn=lambda: random.randint(0, 999999), outputs=seed)
submit_btn.click(
generate_image,
inputs=[image_file, prompt, seed, session_id, enable_safety],
outputs=[status, output_image, output_url, recent_gallery],
api_name=False,
)
if __name__ == "__main__":
threading.Thread(target=cleanup_task, daemon=True).start()
app.queue(max_size=8).launch(
server_name="0.0.0.0",
share=False,
)
|