import os import requests import time import functools import threading import uuid import base64 from pathlib import Path from dotenv import load_dotenv import gradio as gr import random import torch import io from PIL import Image, ImageDraw, ImageFont from transformers import AutoTokenizer, AutoModelForSequenceClassification load_dotenv() API_KEY = os.getenv("WAVESPEED_API_KEY") if not API_KEY: raise ValueError("WAVESPEED_API_KEY is not set in environment variables") MODEL_URL = "TostAI/nsfw-text-detection-large" TITLE = "๐Ÿ–ผ๏ธ๐Ÿ” Image Prompt Safety Classifier ๐Ÿ›ก๏ธ" DESCRIPTION = "โœจ Enter an image generation prompt to classify its safety level! โœจ" # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained(MODEL_URL) model = AutoModelForSequenceClassification.from_pretrained(MODEL_URL) # Define class names with emojis and detailed descriptions CLASS_NAMES = { 0: "โœ… SAFE - This prompt is appropriate and harmless.", 1: "โš ๏ธ QUESTIONABLE - This prompt may require further review.", 2: "๐Ÿšซ UNSAFE - This prompt is likely to generate inappropriate content." } @functools.lru_cache(maxsize=128) def classify_text(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=1024) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class = torch.argmax(logits, dim=1).item() return predicted_class, CLASS_NAMES[predicted_class] class ClientManager: _instances = {} _lock = threading.Lock() @classmethod def get_manager(cls, client_id=None): if not client_id: client_id = str(uuid.uuid4()) with cls._lock: if client_id not in cls._instances: cls._instances[client_id] = ClientGenerationManager() return cls._instances[client_id] @classmethod def cleanup_old_clients(cls, max_age=3600): # 1 hour default current_time = time.time() with cls._lock: to_remove = [] for client_id, manager in cls._instances.items(): if (hasattr(manager, "last_activity") and current_time - manager.last_activity > max_age): to_remove.append(client_id) for client_id in to_remove: del cls._instances[client_id] class ClientGenerationManager: def __init__(self): self.lock = threading.Lock() self.last_activity = time.time() self.request_timestamps = [] # Track timestamps of requests def update_activity(self): with self.lock: self.last_activity = time.time() def add_request_timestamp(self): with self.lock: self.request_timestamps.append(time.time()) def has_exceeded_limit(self, limit=20): with self.lock: current_time = time.time() # Filter timestamps to only include those within the last hour self.request_timestamps = [ ts for ts in self.request_timestamps if current_time - ts <= 3600 ] return len(self.request_timestamps) >= limit class SessionManager: _instances = {} _lock = threading.Lock() @classmethod def get_manager(cls, session_id=None): if session_id is None: session_id = str(uuid.uuid4()) with cls._lock: if session_id not in cls._instances: cls._instances[session_id] = GenerationManager() return session_id, cls._instances[session_id] @classmethod def cleanup_old_sessions(cls, max_age=3600): # 1 hour default current_time = time.time() with cls._lock: to_remove = [] for session_id, manager in cls._instances.items(): if (hasattr(manager, "last_activity") and current_time - manager.last_activity > max_age): to_remove.append(session_id) for session_id in to_remove: del cls._instances[session_id] class GenerationManager: def __init__(self): self.last_activity = time.time() self.request_timestamps = [] # Track timestamps of requests def update_activity(self): self.last_activity = time.time() def add_request_timestamp(self): self.request_timestamps.append(time.time()) def has_exceeded_limit(self, limit=10): # Default limit: 10 requests per hour current_time = time.time() # Filter timestamps to only include those within the last hour self.request_timestamps = [ ts for ts in self.request_timestamps if current_time - ts <= 3600 ] return len(self.request_timestamps) >= limit @torch.no_grad() def classify_prompt(prompt): inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512) outputs = model(**inputs) return torch.argmax(outputs.logits).item() def image_to_base64(file_path): with open(file_path, "rb") as f: return base64.b64encode(f.read()).decode() def decode_base64_to_image(base64_str): image_data = base64.b64decode(base64_str) return Image.open(io.BytesIO(image_data)) def generate_image( image_file, prompt, seed, session_id, enable_safety_checker, request: gr.Request, ): try: client_ip = request.client.host x_forwarded_for = request.headers.get('x-forwarded-for') if x_forwarded_for: client_ip = x_forwarded_for print(f"Client IP: {client_ip}") client_generation_manager = ClientManager.get_manager(client_ip) client_generation_manager.update_activity() if client_generation_manager.has_exceeded_limit(limit=10): error_message = "โŒ Your network has exceeded the limit of 10 requests per hour. Please try again later." yield error_message, None, "", None return client_generation_manager.add_request_timestamp() """Generate images with big status box during generation""" # Get or create a session manager session_id, manager = SessionManager.get_manager(session_id) manager.update_activity() # # Check if the user has exceeded the request limit # if manager.has_exceeded_limit( # limit=10): # Set the limit to 10 requests per hour # error_message = "โŒ You have exceeded the limit of 10 requests per hour. Please try again later." # yield error_message, None, "", None # return # Add the current request timestamp manager.add_request_timestamp() if not prompt or prompt.strip() == "": # Handle empty prompt case error_message = "โš ๏ธ Please enter a prompt first" yield error_message, None, "", None return error_messages = [] if not image_file: error_messages.append("Please upload an image file") elif not Path(image_file).exists(): error_messages.append("File does not exist") if not prompt.strip(): error_messages.append("Prompt cannot be empty") if error_messages: error_message = "โŒ Input validation failed: " + ", ".join( error_messages) yield error_message, None, "", None return # Check if the prompt is safe classification, message = classify_text(prompt) if classification == 2: # UNSAFE yield "โŒ NSFW prompt detected", None, "", None return # Status message status_message = f"๐Ÿ”„ PROCESSING: '{prompt}'" yield status_message, None, "", None try: base64_image = image_to_base64(image_file) input_image = decode_base64_to_image(base64_image) except Exception as e: error_message = f"โŒ File processing failed: {str(e)}" yield error_message, None, "", None return headers = { "Content-Type": "application/json", "Authorization": f"Bearer {API_KEY}", } payload = { "enable_safety_checker": enable_safety_checker, "image": base64_image, "prompt": prompt, "seed": int(seed) if seed != -1 else random.randint(0, 999999) } response = requests.post( "https://api.wavespeed.ai/api/v3/wavespeed-ai/flux-kontext-dev-ultra-fast", headers=headers, json=payload, timeout=30) response.raise_for_status() request_id = response.json()["data"]["id"] result_url = f"https://api.wavespeed.ai/api/v3/predictions/{request_id}/result" start_time = time.time() for _ in range(60): time.sleep(1.0) resp = requests.get(result_url, headers=headers) resp.raise_for_status() data = resp.json()["data"] status = data["status"] if status == "completed": elapsed = time.time() - start_time output_url = data["outputs"][0] has_nsfw_content = data["has_nsfw_contents"][0] if has_nsfw_content: error_message = "โŒ NSFW content detected in the output" yield error_message, None, "", None else: yield f"๐ŸŽ‰ Generation successful! Time taken {elapsed:.1f}s", output_url, output_url, update_recent_gallery( prompt, input_image, output_url) return elif status == "failed": raise Exception(data.get("error", "Unknown error")) else: error_message = f"โณ Current status: {status.capitalize()}..." yield error_message, None, "", None raise Exception("Generation timed out") except Exception as e: error_message = f"โŒ Generation failed: {str(e)}" yield error_message, None, "", None # Schedule periodic cleanup of old sessions def cleanup_task(): SessionManager.cleanup_old_sessions() ClientManager.cleanup_old_clients() # Schedule the next cleanup threading.Timer(3600, cleanup_task).start() # Run every hour # Store recent generations recent_generations = [] with gr.Blocks(theme=gr.themes.Soft(), css=""" .status-box { padding: 10px; border-radius: 5px; margin: 5px; } .safe { background: #e8f5e9; border: 1px solid #a5d6a7; } .warning { background: #fff3e0; border: 1px solid #ffcc80; } .error { background: #ffebee; border: 1px solid #ef9a9a; } """) as app: session_id = gr.State(str(uuid.uuid4())) gr.Markdown("# ๐Ÿ–ผ๏ธFLUX Kontext Dev Ultra Fast Live") gr.Markdown( "FLUX Kontext dev is a new SOTA image editing model published by Black Forest Labs. We have deployed it on [WaveSpeedAI](https://wavespeed.ai/) for ultra-fast image editing. You can use it to edit images in various styles, add objects, or even change the mood of the image. It supports both text prompts and image inputs." ) gr.Markdown( "- [FLUX Kontext dev on WaveSpeedAI](https://wavespeed.ai/models/wavespeed-ai/flux-kontext-dev)" "\n" "- [FLUX Kontext dev LoRA on WaveSpeedAI](https://wavespeed.ai/models/wavespeed-ai/flux-kontext-dev-lora)" "\n" "- [FLUX Kontext dev Ultra Fast on WaveSpeedAI](https://wavespeed.ai/models/wavespeed-ai/flux-kontext-dev-ultra-fast)" "\n" "- [FLUX Kontext dev LoRA Ultra Fast on WaveSpeedAI](https://wavespeed.ai/models/wavespeed-ai/flux-kontext-dev-lora-ultra-fast)" ) with gr.Row(): with gr.Column(scale=1): image_file = gr.Image(label="Upload Image", type="filepath", sources=["upload", "clipboard"], interactive=True, image_mode="RGB", value="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/para-attn/flux-original.png") prompt = gr.Textbox(label="Prompt", placeholder="Please enter your prompt...", lines=3, value="Convert the image into Claymation style.") seed = gr.Number(label="seed", value=-1, minimum=-1, maximum=999999, step=1) random_btn = gr.Button("random๐ŸŽฒseed", variant="secondary") enable_safety = gr.Checkbox(label="๐Ÿ”’ Enable Safety Checker", value=True, interactive=False) with gr.Column(scale=1): output_image = gr.Image(label="Generated Result") status = gr.Textbox(label="Status", elem_classes=["status-box"]) output_url = gr.Textbox(label="Image URL", interactive=True, visible=False) submit_btn = gr.Button("Start Generation", variant="primary") gr.Examples( examples=[ [ "Convert the image into Claymation style.", "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/para-attn/flux-original.png" ], [ "Convert the image into Ghibli style.", "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/penguin.png" ], [ "Add sunglasses to the face of the statue.", "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flux_ip_adapter_input.jpg" ], # [ # 'Convert the image into an ink sketch style.', # "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg" # ], # [ # 'Add a butterfly to the scene.', # "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_depth_result.png" # ] ], inputs=[prompt, image_file], label="Examples") with gr.Accordion("Recent Generations (last 16)", open=False): recent_gallery = gr.Gallery(label="Prompt and Output", columns=4, interactive=False) def get_recent_gallery_items(): gallery_items = [] for r in reversed(recent_generations): if any(x is None for x in r.values()): continue gallery_items.append((r["input"], f"Input: {r['prompt']}")) gallery_items.append((r["output"], f"Output: {r['prompt']}")) return gr.update(value=gallery_items) def update_recent_gallery(prompt, input_image, output_image): recent_generations.append({ "prompt": prompt, "input": input_image, "output": output_image, }) if len(recent_generations) > 16: recent_generations.pop(0) return get_recent_gallery_items() random_btn.click(fn=lambda: random.randint(0, 999999), outputs=seed) submit_btn.click( generate_image, inputs=[image_file, prompt, seed, session_id, enable_safety], outputs=[status, output_image, output_url, recent_gallery], api_name=False, max_batch_size=10, concurrency_limit=20, concurrency_id="generation", ) if __name__ == "__main__": # Start the cleanup task cleanup_task() app.queue(max_size=20).launch( server_name="0.0.0.0", max_threads=10, share=False, )