Spaces:
Paused
Paused
File size: 10,683 Bytes
695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 695e9ac dc5bb05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import os
import requests
import json
import time
import threading
import uuid
import base64
from pathlib import Path
from dotenv import load_dotenv
import gradio as gr
import random
import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# 环境变量加载
load_dotenv()
API_KEY = os.getenv("WAVESPEED_API_KEY")
if not API_KEY:
raise ValueError("WAVESPEED_API_KEY 未在环境变量中设置")
# 安全分类配置
MODEL_URL = "TostAI/nsfw-text-detection-large"
CLASS_NAMES = {0: "✅ SAFE", 1: "⚠️ QUESTIONABLE", 2: "🚫 UNSAFE"}
# 加载安全模型
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_URL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_URL)
except Exception as e:
raise RuntimeError(f"安全模型加载失败: {str(e)}")
# 会话管理
class SessionManager:
_instances = {}
_lock = threading.Lock()
@classmethod
def get_session(cls, session_id):
with cls._lock:
if session_id not in cls._instances:
cls._instances[session_id] = {
'count': 0,
'history': [],
'last_active': time.time()
}
return cls._instances[session_id]
@classmethod
def cleanup_sessions(cls):
with cls._lock:
now = time.time()
expired = [
k for k, v in cls._instances.items()
if now - v['last_active'] > 3600
]
for k in expired:
del cls._instances[k]
# 速率限制
class RateLimiter:
def __init__(self):
self.clients = {}
self.lock = threading.Lock()
def check(self, client_id):
with self.lock:
now = time.time()
if client_id not in self.clients:
self.clients[client_id] = {'count': 1, 'reset': now + 3600}
return True
if now > self.clients[client_id]['reset']:
self.clients[client_id] = {'count': 1, 'reset': now + 3600}
return True
if self.clients[client_id]['count'] >= 20:
return False
self.clients[client_id]['count'] += 1
return True
session_manager = SessionManager()
rate_limiter = RateLimiter()
# 工具函数
def create_error_image(message):
"""生成错误提示图片"""
img = Image.new("RGB", (512, 512), "#ffdddd")
try:
font = ImageFont.truetype("arial.ttf", 24)
except:
font = ImageFont.load_default()
draw = ImageDraw.Draw(img)
text = f"Error: {message[:60]}..." if len(message) > 60 else message
draw.text((50, 200), text, fill="#ff0000", font=font)
return img
@torch.no_grad()
def classify_prompt(prompt):
"""安全分类"""
inputs = tokenizer(prompt,
return_tensors="pt",
truncation=True,
max_length=512)
outputs = model(**inputs)
return torch.argmax(outputs.logits).item()
def image_to_base64(file_path):
"""将图片转换为Base64格式"""
with open(file_path, "rb") as f:
file_ext = Path(file_path).suffix.lower()[1:]
mime_type = f"image/{file_ext}" if file_ext in ["jpeg", "jpg", "png"
] else "image/jpeg"
return f"data:{mime_type};base64,{base64.b64encode(f.read()).decode()}"
# 核心生成逻辑
def generate_image(image_file, prompt, seed, session_id, enable_safety=True):
try:
# 安全检查
if enable_safety:
safety_level = classify_prompt(prompt)
if safety_level != 0:
error_img = create_error_image(CLASS_NAMES[safety_level])
yield f"❌ Blocked: {CLASS_NAMES[safety_level]}", error_img, ""
return
# 速率限制
if not rate_limiter.check(session_id):
error_img = create_error_image(
"Hourly limit exceeded (20 requests)")
yield "❌ 请求过于频繁,请稍后再试", error_img, ""
return
# 会话更新
session = session_manager.get_session(session_id)
session['last_active'] = time.time()
session['count'] += 1
# 输入验证
error_messages = []
if not image_file:
error_messages.append("请上传图片文件")
elif not Path(image_file).exists():
error_messages.append("文件不存在")
elif Path(image_file).suffix.lower()[1:] not in ["jpg", "jpeg", "png"]:
error_messages.append("仅支持JPG/PNG格式")
if not prompt.strip():
error_messages.append("提示语不能为空")
if error_messages:
error_img = create_error_image(" | ".join(error_messages))
yield "❌ 输入验证失败", error_img, ""
return
# 转换为Base64
try:
base64_image = image_to_base64(image_file)
except Exception as e:
error_img = create_error_image(f"文件处理失败: {str(e)}")
yield "❌ 文件处理失败", error_img, ""
return
# 构造请求
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_KEY}",
}
payload = {
"enable_base64_output": True,
"enable_safety_checker": enable_safety,
"image": base64_image,
"prompt": prompt,
"seed": int(seed) if seed != -1 else random.randint(0, 999999)
}
# 提交请求
response = requests.post(
"https://api.wavespeed.ai/api/v2/wavespeed-ai/hidream-e1-full",
headers=headers,
json=payload,
timeout=30)
response.raise_for_status()
# 处理响应
request_id = response.json()["data"]["id"]
result_url = f"https://api.wavespeed.ai/api/v2/predictions/{request_id}/result"
start_time = time.time()
# 轮询结果
for _ in range(60):
time.sleep(1)
resp = requests.get(result_url, headers=headers)
resp.raise_for_status()
data = resp.json()["data"]
status = data["status"]
if status == "completed":
elapsed = time.time() - start_time
image_url = data["outputs"][0]
session["history"].append(image_url)
yield f"🎉 生成成功! 耗时 {elapsed:.1f}s", image_url, image_url
return
elif status == "failed":
raise Exception(data.get("error", "Unknown error"))
else:
yield f"⏳ 当前状态: {status.capitalize()}...", None, None
raise Exception("生成超时")
except Exception as e:
error_img = create_error_image(str(e))
yield f"❌ 生成失败: {str(e)}", error_img, ""
# 后台清理任务
def cleanup_task():
while True:
session_manager.cleanup_sessions()
time.sleep(3600)
# 界面构建
with gr.Blocks(theme=gr.themes.Soft(),
css="""
.status-box { padding: 10px; border-radius: 5px; margin: 5px; }
.safe { background: #e8f5e9; border: 1px solid #a5d6a7; }
.warning { background: #fff3e0; border: 1px solid #ffcc80; }
.error { background: #ffebee; border: 1px solid #ef9a9a; }
""") as app:
session_id = gr.State(str(uuid.uuid4()))
gr.Markdown("# 🖼️Hidream-E1-Full Live On Wavespeed Ai")
gr.Markdown("HiDream-E1 is an image editing model built on HiDream-I1.")
with gr.Row():
with gr.Column(scale=1):
image_file = gr.Image(label="Upload Image",
type="filepath",
sources=["upload"],
interactive=True,
image_mode="RGB")
prompt = gr.Textbox(
label="prompt",
placeholder="Please enter an English prompt...",
lines=3)
seed = gr.Number(label="seed",
value=-1,
minimum=-1,
maximum=999999,
step=1)
random_btn = gr.Button("random🎲seed", variant="secondary")
enable_safety = gr.Checkbox(label="🔒 Enable Safety Checker",
value=True,
interactive=False)
with gr.Column(scale=1):
output_image = gr.Image(label="Generated Result")
output_url = gr.Textbox(label="image url",
interactive=True,
visible=False)
status = gr.Textbox(label="Status", elem_classes=["status-box"])
submit_btn = gr.Button("开始生成", variant="primary")
gr.Examples(examples=[
[
"Convert the image into Claymation style.",
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/penguin.png"
],
[
"Convert the image into a Ghibli style.",
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flux_ip_adapter_input.jpg"
],
[
"Add sunglasses to the face of the girl.",
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_girl2.png"
],
[
'Convert the image into an ink sketch style.',
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
],
[
'Add a butterfly to the scene.',
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_depth_result.png"
]
],
inputs=[prompt, image_file],
label="Examples")
random_btn.click(fn=lambda: random.randint(0, 999999), outputs=seed)
submit_btn.click(
generate_image,
inputs=[image_file, prompt, seed, session_id, enable_safety],
outputs=[status, output_image, output_url])
if __name__ == "__main__":
threading.Thread(target=cleanup_task, daemon=True).start()
app.queue(max_size=4).launch(server_name="0.0.0.0",
server_port=7860,
show_error=True,
share=False)
|