File size: 10,683 Bytes
695e9ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc5bb05
695e9ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc5bb05
 
 
 
695e9ac
 
 
dc5bb05
695e9ac
 
dc5bb05
695e9ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc5bb05
695e9ac
 
 
dc5bb05
695e9ac
 
 
 
 
 
 
 
 
 
 
 
 
dc5bb05
695e9ac
 
 
dc5bb05
 
 
 
695e9ac
 
 
dc5bb05
695e9ac
 
 
 
dc5bb05
 
695e9ac
 
dc5bb05
695e9ac
dc5bb05
695e9ac
 
 
 
 
 
 
 
 
 
 
dc5bb05
 
695e9ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc5bb05
695e9ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc5bb05
695e9ac
 
 
 
 
 
dc5bb05
695e9ac
dc5bb05
 
695e9ac
 
 
 
dc5bb05
 
695e9ac
dc5bb05
695e9ac
 
 
 
 
dc5bb05
 
 
 
 
 
 
 
 
 
 
 
 
 
695e9ac
dc5bb05
 
 
695e9ac
 
dc5bb05
 
 
695e9ac
 
dc5bb05
695e9ac
dc5bb05
 
695e9ac
 
dc5bb05
 
695e9ac
 
dc5bb05
 
695e9ac
 
dc5bb05
 
695e9ac
 
dc5bb05
 
695e9ac
 
dc5bb05
 
695e9ac
dc5bb05
695e9ac
 
 
 
dc5bb05
695e9ac
 
 
dc5bb05
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import os
import requests
import json
import time
import threading
import uuid
import base64
from pathlib import Path
from dotenv import load_dotenv
import gradio as gr
import random
import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoTokenizer, AutoModelForSequenceClassification

# 环境变量加载
load_dotenv()
API_KEY = os.getenv("WAVESPEED_API_KEY")
if not API_KEY:
    raise ValueError("WAVESPEED_API_KEY 未在环境变量中设置")

# 安全分类配置
MODEL_URL = "TostAI/nsfw-text-detection-large"
CLASS_NAMES = {0: "✅ SAFE", 1: "⚠️ QUESTIONABLE", 2: "🚫 UNSAFE"}

# 加载安全模型
try:
    tokenizer = AutoTokenizer.from_pretrained(MODEL_URL)
    model = AutoModelForSequenceClassification.from_pretrained(MODEL_URL)
except Exception as e:
    raise RuntimeError(f"安全模型加载失败: {str(e)}")


# 会话管理
class SessionManager:
    _instances = {}
    _lock = threading.Lock()

    @classmethod
    def get_session(cls, session_id):
        with cls._lock:
            if session_id not in cls._instances:
                cls._instances[session_id] = {
                    'count': 0,
                    'history': [],
                    'last_active': time.time()
                }
            return cls._instances[session_id]

    @classmethod
    def cleanup_sessions(cls):
        with cls._lock:
            now = time.time()
            expired = [
                k for k, v in cls._instances.items()
                if now - v['last_active'] > 3600
            ]
            for k in expired:
                del cls._instances[k]


# 速率限制
class RateLimiter:

    def __init__(self):
        self.clients = {}
        self.lock = threading.Lock()

    def check(self, client_id):
        with self.lock:
            now = time.time()
            if client_id not in self.clients:
                self.clients[client_id] = {'count': 1, 'reset': now + 3600}
                return True
            if now > self.clients[client_id]['reset']:
                self.clients[client_id] = {'count': 1, 'reset': now + 3600}
                return True
            if self.clients[client_id]['count'] >= 20:
                return False
            self.clients[client_id]['count'] += 1
            return True


session_manager = SessionManager()
rate_limiter = RateLimiter()


# 工具函数
def create_error_image(message):
    """生成错误提示图片"""
    img = Image.new("RGB", (512, 512), "#ffdddd")
    try:
        font = ImageFont.truetype("arial.ttf", 24)
    except:
        font = ImageFont.load_default()
    draw = ImageDraw.Draw(img)
    text = f"Error: {message[:60]}..." if len(message) > 60 else message
    draw.text((50, 200), text, fill="#ff0000", font=font)
    return img


@torch.no_grad()
def classify_prompt(prompt):
    """安全分类"""
    inputs = tokenizer(prompt,
                       return_tensors="pt",
                       truncation=True,
                       max_length=512)
    outputs = model(**inputs)
    return torch.argmax(outputs.logits).item()


def image_to_base64(file_path):
    """将图片转换为Base64格式"""
    with open(file_path, "rb") as f:
        file_ext = Path(file_path).suffix.lower()[1:]
        mime_type = f"image/{file_ext}" if file_ext in ["jpeg", "jpg", "png"
                                                        ] else "image/jpeg"
        return f"data:{mime_type};base64,{base64.b64encode(f.read()).decode()}"


# 核心生成逻辑
def generate_image(image_file, prompt, seed, session_id, enable_safety=True):
    try:
        # 安全检查
        if enable_safety:
            safety_level = classify_prompt(prompt)
            if safety_level != 0:
                error_img = create_error_image(CLASS_NAMES[safety_level])
                yield f"❌ Blocked: {CLASS_NAMES[safety_level]}", error_img, ""
                return

        # 速率限制
        if not rate_limiter.check(session_id):
            error_img = create_error_image(
                "Hourly limit exceeded (20 requests)")
            yield "❌ 请求过于频繁,请稍后再试", error_img, ""
            return

        # 会话更新
        session = session_manager.get_session(session_id)
        session['last_active'] = time.time()
        session['count'] += 1

        # 输入验证
        error_messages = []
        if not image_file:
            error_messages.append("请上传图片文件")
        elif not Path(image_file).exists():
            error_messages.append("文件不存在")
        elif Path(image_file).suffix.lower()[1:] not in ["jpg", "jpeg", "png"]:
            error_messages.append("仅支持JPG/PNG格式")
        if not prompt.strip():
            error_messages.append("提示语不能为空")
        if error_messages:
            error_img = create_error_image(" | ".join(error_messages))
            yield "❌ 输入验证失败", error_img, ""
            return

        # 转换为Base64
        try:
            base64_image = image_to_base64(image_file)
        except Exception as e:
            error_img = create_error_image(f"文件处理失败: {str(e)}")
            yield "❌ 文件处理失败", error_img, ""
            return

        # 构造请求
        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {API_KEY}",
        }
        payload = {
            "enable_base64_output": True,
            "enable_safety_checker": enable_safety,
            "image": base64_image,
            "prompt": prompt,
            "seed": int(seed) if seed != -1 else random.randint(0, 999999)
        }

        # 提交请求
        response = requests.post(
            "https://api.wavespeed.ai/api/v2/wavespeed-ai/hidream-e1-full",
            headers=headers,
            json=payload,
            timeout=30)
        response.raise_for_status()

        # 处理响应
        request_id = response.json()["data"]["id"]
        result_url = f"https://api.wavespeed.ai/api/v2/predictions/{request_id}/result"
        start_time = time.time()

        # 轮询结果
        for _ in range(60):
            time.sleep(1)
            resp = requests.get(result_url, headers=headers)
            resp.raise_for_status()

            data = resp.json()["data"]
            status = data["status"]

            if status == "completed":
                elapsed = time.time() - start_time
                image_url = data["outputs"][0]
                session["history"].append(image_url)
                yield f"🎉 生成成功! 耗时 {elapsed:.1f}s", image_url, image_url
                return
            elif status == "failed":
                raise Exception(data.get("error", "Unknown error"))
            else:
                yield f"⏳ 当前状态: {status.capitalize()}...", None, None

        raise Exception("生成超时")

    except Exception as e:
        error_img = create_error_image(str(e))
        yield f"❌ 生成失败: {str(e)}", error_img, ""


# 后台清理任务
def cleanup_task():
    while True:
        session_manager.cleanup_sessions()
        time.sleep(3600)


# 界面构建
with gr.Blocks(theme=gr.themes.Soft(),
               css="""
    .status-box { padding: 10px; border-radius: 5px; margin: 5px; }
    .safe { background: #e8f5e9; border: 1px solid #a5d6a7; }
    .warning { background: #fff3e0; border: 1px solid #ffcc80; }
    .error { background: #ffebee; border: 1px solid #ef9a9a; }
    """) as app:

    session_id = gr.State(str(uuid.uuid4()))

    gr.Markdown("# 🖼️Hidream-E1-Full Live On  Wavespeed Ai")
    gr.Markdown("HiDream-E1 is an image editing model built on HiDream-I1.")

    with gr.Row():
        with gr.Column(scale=1):
            image_file = gr.Image(label="Upload Image",
                                  type="filepath",
                                  sources=["upload"],
                                  interactive=True,
                                  image_mode="RGB")
            prompt = gr.Textbox(
                label="prompt",
                placeholder="Please enter an English prompt...",
                lines=3)
            seed = gr.Number(label="seed",
                             value=-1,
                             minimum=-1,
                             maximum=999999,
                             step=1)
            random_btn = gr.Button("random🎲seed", variant="secondary")
            enable_safety = gr.Checkbox(label="🔒 Enable Safety Checker",
                                        value=True,
                                        interactive=False)
        with gr.Column(scale=1):
            output_image = gr.Image(label="Generated Result")
            output_url = gr.Textbox(label="image url",
                                    interactive=True,
                                    visible=False)
            status = gr.Textbox(label="Status", elem_classes=["status-box"])
            submit_btn = gr.Button("开始生成", variant="primary")
    gr.Examples(examples=[
        [
            "Convert the image into Claymation style.",
            "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/penguin.png"
        ],
        [
            "Convert the image into a Ghibli style.",
            "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flux_ip_adapter_input.jpg"
        ],
        [
            "Add sunglasses to the face of the girl.",
            "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_girl2.png"
        ],
        [
            'Convert the image into an ink sketch style.',
            "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
        ],
        [
            'Add a butterfly to the scene.',
            "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_depth_result.png"
        ]
    ],
                inputs=[prompt, image_file],
                label="Examples")

    random_btn.click(fn=lambda: random.randint(0, 999999), outputs=seed)

    submit_btn.click(
        generate_image,
        inputs=[image_file, prompt, seed, session_id, enable_safety],
        outputs=[status, output_image, output_url])

if __name__ == "__main__":
    threading.Thread(target=cleanup_task, daemon=True).start()
    app.queue(max_size=4).launch(server_name="0.0.0.0",
                                 server_port=7860,
                                 show_error=True,
                                 share=False)