jiandan1998's picture
Update app.py
48ad5db verified
raw
history blame
10.3 kB
import os
import requests
import json
import time
import random
import base64
import uuid
import threading
from pathlib import Path
from dotenv import load_dotenv
import gradio as gr
import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoTokenizer, AutoModelForSequenceClassification
load_dotenv()
MODEL_URL = "TostAI/nsfw-text-detection-large"
CLASS_NAMES = {0: "✅ SAFE", 1: "⚠️ QUESTIONABLE", 2: "🚫 UNSAFE"}
tokenizer = AutoTokenizer.from_pretrained(MODEL_URL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_URL)
class SessionManager:
_instances = {}
_lock = threading.Lock()
@classmethod
def get_session(cls, session_id):
with cls._lock:
if session_id not in cls._instances:
cls._instances[session_id] = {
'count': 0,
'history': [],
'last_active': time.time()
}
return cls._instances[session_id]
@classmethod
def cleanup_sessions(cls):
with cls._lock:
now = time.time()
expired = [k for k, v in cls._instances.items() if now - v['last_active'] > 3600]
for k in expired:
del cls._instances[k]
class RateLimiter:
def __init__(self):
self.clients = {}
self.lock = threading.Lock()
def check(self, client_id):
with self.lock:
now = time.time()
if client_id not in self.clients:
self.clients[client_id] = {'count': 1, 'reset': now + 3600}
return True
if now > self.clients[client_id]['reset']:
self.clients[client_id] = {'count': 1, 'reset': now + 3600}
return True
if self.clients[client_id]['count'] >= 20:
return False
self.clients[client_id]['count'] += 1
return True
session_manager = SessionManager()
rate_limiter = RateLimiter()
def create_error_image(message):
img = Image.new("RGB", (832, 480), "#ffdddd")
try:
font = ImageFont.truetype("arial.ttf", 24)
except:
font = ImageFont.load_default()
draw = ImageDraw.Draw(img)
text = f"Error: {message[:60]}..." if len(message) > 60 else message
draw.text((50, 200), text, fill="#ff0000", font=font)
img.save("error.jpg")
return "error.jpg"
def classify_prompt(prompt):
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
return torch.argmax(outputs.logits).item()
def image_to_base64(file_path):
try:
with open(file_path, "rb") as image_file:
ext = Path(file_path).suffix.lower().lstrip('.')
mime_map = {
'jpg': 'jpeg',
'jpeg': 'jpeg',
'png': 'png',
'webp': 'webp',
'gif': 'gif'
}
mime_type = mime_map.get(ext, 'jpeg')
raw_data = image_file.read()
encoded = base64.b64encode(raw_data)
missing_padding = len(encoded) % 4
if missing_padding:
encoded += b'=' * (4 - missing_padding)
return f"data:image/{mime_type};base64,{encoded.decode('utf-8')}"
except Exception as e:
raise ValueError(f"Base64编码失败: {str(e)}")
def generate_video(
image,
prompt,
enable_safety,
flow_shift,
guidance_scale,
negative_prompt,
seed,
size,
session_id
):
safety_level = classify_prompt(prompt)
if safety_level != 0:
error_img = create_error_image(CLASS_NAMES[safety_level])
yield f"❌ Blocked: {CLASS_NAMES[safety_level]}", error_img
return
if not rate_limiter.check(session_id):
error_img = create_error_image("每小时限制20次请求")
yield "❌ 请求过于频繁,请稍后再试", error_img
return
session = session_manager.get_session(session_id)
session['last_active'] = time.time()
session['count'] += 1
API_KEY = os.getenv("WAVESPEED_API_KEY")
if not API_KEY:
error_img = create_error_image("API密钥缺失")
yield "❌ Error: Missing API Key", error_img
return
try:
base64_image = image_to_base64(image)
except Exception as e:
error_img = create_error_image(str(e))
yield f"❌ 文件上传失败: {str(e)}", error_img
return
payload = {
"enable_safety_checker": enable_safety,
"flow_shift": flow_shift,
"guidance_scale": guidance_scale,
"image": base64_image,
"negative_prompt": negative_prompt,
"prompt": prompt,
"seed": seed if seed != -1 else random.randint(0, 999999),
"size": size
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_KEY}",
}
try:
response = requests.post(
"https://api.wavespeed.ai/api/v2/wavespeed-ai/hunyuan-custom-ref2v-480p",
headers=headers,
data=json.dumps(payload)
)
if response.status_code != 200:
error_img = create_error_image(response.text)
yield f"❌ API错误 ({response.status_code}): {response.text}", error_img
return
request_id = response.json()["data"]["id"]
yield f"✅ 任务已提交 (ID: {request_id})", None
except Exception as e:
error_img = create_error_image(str(e))
yield f"❌ 连接错误: {str(e)}", error_img
return
result_url = f"https://api.wavespeed.ai/api/v2/predictions/{request_id}/result"
start_time = time.time()
while True:
time.sleep(0.5)
try:
response = requests.get(result_url, headers=headers)
if response.status_code != 200:
error_img = create_error_image(response.text)
yield f"❌ 轮询错误 ({response.status_code}): {response.text}", error_img
return
data = response.json()["data"]
status = data["status"]
if status == "completed":
elapsed = time.time() - start_time
video_url = data['outputs'][0]
session["history"].append(video_url)
yield (f"🎉 完成! 耗时 {elapsed:.1f}秒\n"
f"下载链接: {video_url}"), video_url
return
elif status == "failed":
error_img = create_error_image(data.get('error', '未知错误'))
yield f"❌ 任务失败: {data.get('error', '未知错误')}", error_img
return
else:
yield f"⏳ 状态: {status.capitalize()}...", None
except Exception as e:
error_img = create_error_image(str(e))
yield f"❌ 轮询失败: {str(e)}", error_img
return
def cleanup_task():
while True:
session_manager.cleanup_sessions()
time.sleep(3600)
with gr.Blocks(
theme=gr.themes.Soft(),
css="""
.video-preview { max-width: 600px !important; }
.status-box { padding: 10px; border-radius: 5px; margin: 5px; }
.safe { background: #e8f5e9; border: 1px solid #a5d6a7; }
.warning { background: #fff3e0; border: 1px solid #ffcc80; }
.error { background: #ffebee; border: 1px solid #ef9a9a; }
"""
) as app:
session_id = gr.State(str(uuid.uuid4()))
gr.Markdown("# 🌊Hunyuan-Custom-Ref2v Run On [WaveSpeedAI](https://wavespeed.ai/)")
gr.Markdown("""HunyuanCustom, a multi-modal, conditional, and controllable generation model centered on subject consistency, built upon the Hunyuan Video generation framework. It enables the generation of subject-consistent videos conditioned on text, images, audio, and video inputs.""")
with gr.Row():
with gr.Column(scale=1):
img_input = gr.Image(type="filepath", label="Input Image")
prompt = gr.Textbox(label="Prompt", lines=5, placeholder="Prompt...")
negative_prompt = gr.Textbox(label="Negative Prompt", lines=2)
size = gr.Dropdown(["832*480", "480*832"], value="832*480", label="Size")
seed = gr.Number(-1, label="Seed")
random_seed_btn = gr.Button("Random🎲Seed", variant="secondary")
guidance = gr.Slider(1, 20, value=7.5, step=0.1, label="Guidance")
flow_shift = gr.Slider(1, 20, value=13, step=1, label="Shift", interactive=False)
enable_safety = gr.Checkbox(True, label="Enable Safety Checker", interactive=False)
with gr.Column(scale=1):
video_output = gr.Video(label="Video Output", format="mp4", interactive=False, elem_classes=["video-preview"])
generate_btn = gr.Button("Generate", variant="primary")
status_output = gr.Textbox(label="status", interactive=False, lines=4)
gr.Examples(
examples=[
[
"Create a dynamic and intense scene depicting a warrior fighting a fearsome fire dragon. The setting should be grand and immersive, capturing the scale and drama of the confrontation.",
"https://d2g64w682n9w0w.cloudfront.net/media/images/1745337597019716935_RS1XUQMI.jpg"
]
],
inputs=[prompt, img_input],
label="Examples Prompt",
examples_per_page=3
)
random_seed_btn.click(
fn=lambda: random.randint(0, 999999),
outputs=seed
)
generate_btn.click(
generate_video,
inputs=[
img_input,
prompt,
enable_safety,
flow_shift,
guidance,
negative_prompt,
seed,
size,
session_id
],
outputs=[status_output, video_output]
)
if __name__ == "__main__":
threading.Thread(target=cleanup_task, daemon=True).start()
app.queue(max_size=4).launch(
server_name="0.0.0.0",
max_threads=16,
share=False
)