jiandan1998's picture
Update app.py
c82eeaa verified
import os
import requests
import json
import time
import random
import base64
import uuid
import threading
from pathlib import Path
from dotenv import load_dotenv
import gradio as gr
import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoTokenizer, AutoModelForSequenceClassification
load_dotenv()
MODEL_URL = "TostAI/nsfw-text-detection-large"
CLASS_NAMES = {0: "✅ SAFE", 1: "⚠️ QUESTIONABLE", 2: "🚫 UNSAFE"}
tokenizer = AutoTokenizer.from_pretrained(MODEL_URL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_URL)
class SessionManager:
_instances = {}
_lock = threading.Lock()
@classmethod
def get_session(cls, session_id):
with cls._lock:
if session_id not in cls._instances:
cls._instances[session_id] = {
'count': 0,
'history': [],
'last_active': time.time()
}
return cls._instances[session_id]
@classmethod
def cleanup_sessions(cls):
with cls._lock:
now = time.time()
expired = [k for k, v in cls._instances.items() if now - v['last_active'] > 3600]
for k in expired:
del cls._instances[k]
class RateLimiter:
def __init__(self):
self.clients = {}
self.lock = threading.Lock()
def check(self, client_id):
with self.lock:
now = time.time()
if client_id not in self.clients:
self.clients[client_id] = {'count': 1, 'reset': now + 3600}
return True
if now > self.clients[client_id]['reset']:
self.clients[client_id] = {'count': 1, 'reset': now + 3600}
return True
if self.clients[client_id]['count'] >= 20:
return False
self.clients[client_id]['count'] += 1
return True
session_manager = SessionManager()
rate_limiter = RateLimiter()
def create_error_image(message):
img = Image.new("RGB", (832, 480), "#ffdddd")
try:
font = ImageFont.truetype("arial.ttf", 24)
except:
font = ImageFont.load_default()
draw = ImageDraw.Draw(img)
text = f"Error: {message[:60]}..." if len(message) > 60 else message
draw.text((50, 200), text, fill="#ff0000", font=font)
img.save("error.jpg")
return "error.jpg"
def classify_prompt(prompt):
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
return torch.argmax(outputs.logits).item()
def image_to_base64(file_path):
try:
with open(file_path, "rb") as image_file:
ext = Path(file_path).suffix.lower().lstrip('.')
mime_map = {
'jpg': 'jpeg',
'jpeg': 'jpeg',
'png': 'png',
'webp': 'webp',
'gif': 'gif'
}
mime_type = mime_map.get(ext, 'jpeg')
raw_data = image_file.read()
encoded = base64.b64encode(raw_data)
missing_padding = len(encoded) % 4
if missing_padding:
encoded += b'=' * (4 - missing_padding)
return f"data:image/{mime_type};base64,{encoded.decode('utf-8')}"
except Exception as e:
raise ValueError(f"Base64编码失败: {str(e)}")
def generate_video(
image,
prompt,
enable_safety,
flow_shift,
guidance_scale,
negative_prompt,
seed,
size,
session_id
):
safety_level = classify_prompt(prompt)
if safety_level != 0:
error_img = create_error_image(CLASS_NAMES[safety_level])
yield f"❌ Blocked: {CLASS_NAMES[safety_level]}", error_img
return
if not rate_limiter.check(session_id):
error_img = create_error_image("每小时限制20次请求")
yield "❌ 请求过于频繁,请稍后再试", error_img
return
session = session_manager.get_session(session_id)
session['last_active'] = time.time()
session['count'] += 1
API_KEY = os.getenv("WAVESPEED_API_KEY")
if not API_KEY:
error_img = create_error_image("API密钥缺失")
yield "❌ Error: Missing API Key", error_img
return
try:
base64_image = image_to_base64(image)
except Exception as e:
error_img = create_error_image(str(e))
yield f"❌ 文件上传失败: {str(e)}", error_img
return
payload = {
"enable_safety_checker": enable_safety,
"flow_shift": flow_shift,
"guidance_scale": guidance_scale,
"image": base64_image,
"negative_prompt": negative_prompt,
"prompt": prompt,
"seed": seed if seed != -1 else random.randint(0, 999999),
"size": size
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_KEY}",
}
try:
response = requests.post(
"https://api.wavespeed.ai/api/v2/wavespeed-ai/hunyuan-custom-ref2v-480p",
headers=headers,
data=json.dumps(payload)
)
if response.status_code != 200:
error_img = create_error_image(response.text)
yield f"❌ API错误 ({response.status_code}): {response.text}", error_img
return
request_id = response.json()["data"]["id"]
yield f"✅ 任务已提交 (ID: {request_id})", None
except Exception as e:
error_img = create_error_image(str(e))
yield f"❌ 连接错误: {str(e)}", error_img
return
result_url = f"https://api.wavespeed.ai/api/v2/predictions/{request_id}/result"
start_time = time.time()
while True:
time.sleep(0.5)
try:
response = requests.get(result_url, headers=headers)
if response.status_code != 200:
error_img = create_error_image(response.text)
yield f"❌ 轮询错误 ({response.status_code}): {response.text}", error_img
return
data = response.json()["data"]
status = data["status"]
if status == "completed":
elapsed = time.time() - start_time
video_url = data['outputs'][0]
session["history"].append(video_url)
yield (f"🎉 完成! 耗时 {elapsed:.1f}秒\n"
f"下载链接: {video_url}"), video_url
return
elif status == "failed":
error_img = create_error_image(data.get('error', '未知错误'))
yield f"❌ 任务失败: {data.get('error', '未知错误')}", error_img
return
else:
yield f"⏳ 状态: {status.capitalize()}...", None
except Exception as e:
error_img = create_error_image(str(e))
yield f"❌ 轮询失败: {str(e)}", error_img
return
def cleanup_task():
while True:
session_manager.cleanup_sessions()
time.sleep(3600)
with gr.Blocks(
theme=gr.themes.Soft(),
css="""
.video-preview { max-width: 600px !important; }
.status-box { padding: 10px; border-radius: 5px; margin: 5px; }
.safe { background: #e8f5e9; border: 1px solid #a5d6a7; }
.warning { background: #fff3e0; border: 1px solid #ffcc80; }
.error { background: #ffebee; border: 1px solid #ef9a9a; }
"""
) as app:
session_id = gr.State(str(uuid.uuid4()))
gr.Markdown("# 🌊Hunyuan-Custom-Ref2v Run On [WaveSpeedAI](https://wavespeed.ai/)")
gr.Markdown("""HunyuanCustom, a multi-modal, conditional, and controllable generation model centered on subject consistency, built upon the Hunyuan Video generation framework. It enables the generation of subject-consistent videos conditioned on text, images, audio, and video inputs.""")
with gr.Row():
with gr.Column(scale=1):
img_input = gr.Image(type="filepath", label="Input Image")
prompt = gr.Textbox(label="Prompt", lines=5, placeholder="Prompt...")
negative_prompt = gr.Textbox(label="Negative Prompt", lines=2)
size = gr.Dropdown(["832*480", "480*832"], value="832*480", label="Size")
seed = gr.Number(-1, label="Seed")
random_seed_btn = gr.Button("Random🎲Seed", variant="secondary")
guidance = gr.Slider(1, 20, value=7.5, step=0.1, label="Guidance")
flow_shift = gr.Slider(1, 20, value=13, step=1, label="Shift")
enable_safety = gr.Checkbox(True, label="Enable Safety Checker", interactive=False)
with gr.Column(scale=1):
video_output = gr.Video(label="Video Output", format="mp4", interactive=False, elem_classes=["video-preview"])
generate_btn = gr.Button("Generate", variant="primary")
status_output = gr.Textbox(label="status", interactive=False, lines=4)
gr.Examples(
examples=[
[
"A dog is chasing a cat in the park. ",
"https://github.com/Tencent/HunyuanCustom/blob/main/assets/images/seg_poodle.png?raw=true"
],
[
"A single person, in the dressing room. A woman is holding a lipstick, trying it on, and introducing it. ",
"https://github.com/Tencent/HunyuanCustom/blob/main/assets/images/seg_boy.png?raw=true"
],
[
"A man is drinking Moutai in the pavilion. ",
"https://github.com/Tencent/HunyuanCustom/blob/main/assets/images/seg_man_03.png?raw=true"
],
[
"A woman is boxing with a panda, and they are at a stalemate. ",
"https://github.com/Tencent/HunyuanCustom/blob/main/assets/images/seg_woman_01.png?raw=true"
]
],
inputs=[prompt, img_input],
label="Examples Prompt",
examples_per_page=3
)
random_seed_btn.click(
fn=lambda: random.randint(0, 999999),
outputs=seed
)
generate_btn.click(
generate_video,
inputs=[
img_input,
prompt,
enable_safety,
flow_shift,
guidance,
negative_prompt,
seed,
size,
session_id
],
outputs=[status_output, video_output]
)
if __name__ == "__main__":
threading.Thread(target=cleanup_task, daemon=True).start()
app.queue(max_size=4).launch(
server_name="0.0.0.0",
max_threads=16,
share=False
)