import os import requests import json import time import random import base64 import uuid import threading from pathlib import Path from dotenv import load_dotenv import gradio as gr import torch from PIL import Image, ImageDraw, ImageFont from transformers import AutoTokenizer, AutoModelForSequenceClassification load_dotenv() MODEL_URL = "TostAI/nsfw-text-detection-large" CLASS_NAMES = {0: "✅ SAFE", 1: "⚠️ QUESTIONABLE", 2: "🚫 UNSAFE"} tokenizer = AutoTokenizer.from_pretrained(MODEL_URL) model = AutoModelForSequenceClassification.from_pretrained(MODEL_URL) class SessionManager: _instances = {} _lock = threading.Lock() @classmethod def get_session(cls, session_id): with cls._lock: if session_id not in cls._instances: cls._instances[session_id] = { 'count': 0, 'history': [], 'last_active': time.time() } return cls._instances[session_id] @classmethod def cleanup_sessions(cls): with cls._lock: now = time.time() expired = [k for k, v in cls._instances.items() if now - v['last_active'] > 3600] for k in expired: del cls._instances[k] class RateLimiter: def __init__(self): self.clients = {} self.lock = threading.Lock() def check(self, client_id): with self.lock: now = time.time() if client_id not in self.clients: self.clients[client_id] = {'count': 1, 'reset': now + 3600} return True if now > self.clients[client_id]['reset']: self.clients[client_id] = {'count': 1, 'reset': now + 3600} return True if self.clients[client_id]['count'] >= 20: return False self.clients[client_id]['count'] += 1 return True session_manager = SessionManager() rate_limiter = RateLimiter() def create_error_image(message): img = Image.new("RGB", (832, 480), "#ffdddd") try: font = ImageFont.truetype("arial.ttf", 24) except: font = ImageFont.load_default() draw = ImageDraw.Draw(img) text = f"Error: {message[:60]}..." if len(message) > 60 else message draw.text((50, 200), text, fill="#ff0000", font=font) img.save("error.jpg") return "error.jpg" def classify_prompt(prompt): inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512) with torch.no_grad(): outputs = model(**inputs) return torch.argmax(outputs.logits).item() def image_to_base64(file_path): try: with open(file_path, "rb") as image_file: ext = Path(file_path).suffix.lower().lstrip('.') mime_map = { 'jpg': 'jpeg', 'jpeg': 'jpeg', 'png': 'png', 'webp': 'webp', 'gif': 'gif' } mime_type = mime_map.get(ext, 'jpeg') raw_data = image_file.read() encoded = base64.b64encode(raw_data) missing_padding = len(encoded) % 4 if missing_padding: encoded += b'=' * (4 - missing_padding) return f"data:image/{mime_type};base64,{encoded.decode('utf-8')}" except Exception as e: raise ValueError(f"Base64编码失败: {str(e)}") def generate_video( image, prompt, enable_safety, flow_shift, guidance_scale, negative_prompt, seed, size, session_id ): safety_level = classify_prompt(prompt) if safety_level != 0: error_img = create_error_image(CLASS_NAMES[safety_level]) yield f"❌ Blocked: {CLASS_NAMES[safety_level]}", error_img return if not rate_limiter.check(session_id): error_img = create_error_image("每小时限制20次请求") yield "❌ 请求过于频繁,请稍后再试", error_img return session = session_manager.get_session(session_id) session['last_active'] = time.time() session['count'] += 1 API_KEY = os.getenv("WAVESPEED_API_KEY") if not API_KEY: error_img = create_error_image("API密钥缺失") yield "❌ Error: Missing API Key", error_img return try: base64_image = image_to_base64(image) except Exception as e: error_img = create_error_image(str(e)) yield f"❌ 文件上传失败: {str(e)}", error_img return payload = { "enable_safety_checker": enable_safety, "flow_shift": flow_shift, "guidance_scale": guidance_scale, "image": base64_image, "negative_prompt": negative_prompt, "prompt": prompt, "seed": seed if seed != -1 else random.randint(0, 999999), "size": size } headers = { "Content-Type": "application/json", "Authorization": f"Bearer {API_KEY}", } try: response = requests.post( "https://api.wavespeed.ai/api/v2/wavespeed-ai/hunyuan-custom-ref2v-480p", headers=headers, data=json.dumps(payload) ) if response.status_code != 200: error_img = create_error_image(response.text) yield f"❌ API错误 ({response.status_code}): {response.text}", error_img return request_id = response.json()["data"]["id"] yield f"✅ 任务已提交 (ID: {request_id})", None except Exception as e: error_img = create_error_image(str(e)) yield f"❌ 连接错误: {str(e)}", error_img return result_url = f"https://api.wavespeed.ai/api/v2/predictions/{request_id}/result" start_time = time.time() while True: time.sleep(0.5) try: response = requests.get(result_url, headers=headers) if response.status_code != 200: error_img = create_error_image(response.text) yield f"❌ 轮询错误 ({response.status_code}): {response.text}", error_img return data = response.json()["data"] status = data["status"] if status == "completed": elapsed = time.time() - start_time video_url = data['outputs'][0] session["history"].append(video_url) yield (f"🎉 完成! 耗时 {elapsed:.1f}秒\n" f"下载链接: {video_url}"), video_url return elif status == "failed": error_img = create_error_image(data.get('error', '未知错误')) yield f"❌ 任务失败: {data.get('error', '未知错误')}", error_img return else: yield f"⏳ 状态: {status.capitalize()}...", None except Exception as e: error_img = create_error_image(str(e)) yield f"❌ 轮询失败: {str(e)}", error_img return def cleanup_task(): while True: session_manager.cleanup_sessions() time.sleep(3600) with gr.Blocks( theme=gr.themes.Soft(), css=""" .video-preview { max-width: 600px !important; } .status-box { padding: 10px; border-radius: 5px; margin: 5px; } .safe { background: #e8f5e9; border: 1px solid #a5d6a7; } .warning { background: #fff3e0; border: 1px solid #ffcc80; } .error { background: #ffebee; border: 1px solid #ef9a9a; } """ ) as app: session_id = gr.State(str(uuid.uuid4())) gr.Markdown("# 🌊Hunyuan-Custom-Ref2v Run On [WaveSpeedAI](https://wavespeed.ai/)") gr.Markdown("""HunyuanCustom, a multi-modal, conditional, and controllable generation model centered on subject consistency, built upon the Hunyuan Video generation framework. It enables the generation of subject-consistent videos conditioned on text, images, audio, and video inputs.""") with gr.Row(): with gr.Column(scale=1): img_input = gr.Image(type="filepath", label="Input Image") prompt = gr.Textbox(label="Prompt", lines=5, placeholder="Prompt...") negative_prompt = gr.Textbox(label="Negative Prompt", lines=2) size = gr.Dropdown(["832*480", "480*832"], value="832*480", label="Size") seed = gr.Number(-1, label="Seed") random_seed_btn = gr.Button("Random🎲Seed", variant="secondary") guidance = gr.Slider(1, 20, value=7.5, step=0.1, label="Guidance") flow_shift = gr.Slider(1, 20, value=13, step=1, label="Shift") enable_safety = gr.Checkbox(True, label="Enable Safety Checker", interactive=False) with gr.Column(scale=1): video_output = gr.Video(label="Video Output", format="mp4", interactive=False, elem_classes=["video-preview"]) generate_btn = gr.Button("Generate", variant="primary") status_output = gr.Textbox(label="status", interactive=False, lines=4) gr.Examples( examples=[ [ "A dog is chasing a cat in the park. ", "https://github.com/Tencent/HunyuanCustom/blob/main/assets/images/seg_poodle.png?raw=true" ], [ "A single person, in the dressing room. A woman is holding a lipstick, trying it on, and introducing it. ", "https://github.com/Tencent/HunyuanCustom/blob/main/assets/images/seg_boy.png?raw=true" ], [ "A man is drinking Moutai in the pavilion. ", "https://github.com/Tencent/HunyuanCustom/blob/main/assets/images/seg_man_03.png?raw=true" ], [ "A woman is boxing with a panda, and they are at a stalemate. ", "https://github.com/Tencent/HunyuanCustom/blob/main/assets/images/seg_woman_01.png?raw=true" ] ], inputs=[prompt, img_input], label="Examples Prompt", examples_per_page=3 ) random_seed_btn.click( fn=lambda: random.randint(0, 999999), outputs=seed ) generate_btn.click( generate_video, inputs=[ img_input, prompt, enable_safety, flow_shift, guidance, negative_prompt, seed, size, session_id ], outputs=[status_output, video_output] ) if __name__ == "__main__": threading.Thread(target=cleanup_task, daemon=True).start() app.queue(max_size=4).launch( server_name="0.0.0.0", max_threads=16, share=False )