Wan2.1-VACE-14B / app.py
jiandan1998's picture
Update app.py
58713ea verified
import os
import requests
import json
import time
import random
import base64
import uuid
import threading
from pathlib import Path
from dotenv import load_dotenv
import gradio as gr
import torch
import logging
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoTokenizer, AutoModelForSequenceClassification
load_dotenv()
MODEL_URL = "TostAI/nsfw-text-detection-large"
CLASS_NAMES = {0: "✅ SAFE", 1: "⚠️ QUESTIONABLE", 2: "🚫 UNSAFE"}
tokenizer = AutoTokenizer.from_pretrained(MODEL_URL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_URL)
class SessionManager:
_instances = {}
_lock = threading.Lock()
@classmethod
def get_session(cls, session_id):
with cls._lock:
if session_id not in cls._instances:
cls._instances[session_id] = {
'count': 0,
'history': [],
'last_active': time.time()
}
return cls._instances[session_id]
@classmethod
def cleanup_sessions(cls):
with cls._lock:
now = time.time()
expired = [k for k, v in cls._instances.items() if now - v['last_active'] > 3600]
for k in expired:
del cls._instances[k]
class RateLimiter:
def __init__(self):
self.clients = {}
self.lock = threading.Lock()
def check(self, client_id):
with self.lock:
now = time.time()
if client_id not in self.clients:
self.clients[client_id] = {'count': 1, 'reset': now + 3600}
return True
if now > self.clients[client_id]['reset']:
self.clients[client_id] = {'count': 1, 'reset': now + 3600}
return True
if self.clients[client_id]['count'] >= 10:
return False
self.clients[client_id]['count'] += 1
return True
session_manager = SessionManager()
rate_limiter = RateLimiter()
def create_error_image(message):
img = Image.new("RGB", (832, 480), "#ffdddd")
try:
font = ImageFont.truetype("arial.ttf", 24)
except:
font = ImageFont.load_default()
draw = ImageDraw.Draw(img)
text = f"Error: {message[:60]}..." if len(message) > 60 else message
draw.text((50, 200), text, fill="#ff0000", font=font)
img.save("error.jpg")
return "error.jpg"
def classify_prompt(prompt):
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
return torch.argmax(outputs.logits).item()
def image_to_base64(file_path):
try:
with open(file_path, "rb") as image_file:
raw_data = image_file.read()
encoded = base64.b64encode(raw_data)
missing_padding = len(encoded) % 4
if missing_padding:
encoded += b'=' * (4 - missing_padding)
return encoded.decode('utf-8')
except Exception as e:
raise ValueError(f"Base64编码失败: {str(e)}")
def video_to_base64(file_path):
"""
将视频文件转换为Base64格式
"""
try:
with open(file_path, "rb") as video_file:
raw_data = video_file.read()
encoded = base64.b64encode(raw_data)
missing_padding = len(encoded) % 4
if missing_padding:
encoded += b'=' * (4 - missing_padding)
return encoded.decode('utf-8')
except Exception as e:
raise ValueError(f"Base64编码失败: {str(e)}")
def generate_video(
context_scale,
enable_safety_checker,
enable_fast_mode,
flow_shift,
guidance_scale,
images,
negative_prompt,
num_inference_steps,
prompt,
seed,
size,
task,
video,
session_id,
):
safety_level = classify_prompt(prompt)
if safety_level != 0:
error_img = create_error_image(CLASS_NAMES[safety_level])
yield f"❌ Blocked: {CLASS_NAMES[safety_level]}", error_img
return
if not rate_limiter.check(session_id):
error_img = create_error_image("每小时限制20次请求")
yield "❌ rate limit exceeded", error_img
return
session = session_manager.get_session(session_id)
session['last_active'] = time.time()
session['count'] += 1
API_KEY = "30a09de38569400bcdab9cec1c9a660b1924a2b5f54aa386eeb87f96a112fb93"
if not API_KEY:
error_img = create_error_image("API key not found")
yield "❌ Error: Missing API Key", error_img
return
try:
base64_images = []
if images is not None: # 检查 images 是否为 None
for img_path in images:
base64_img = image_to_base64(img_path)
base64_images.append(base64_img)
except Exception as e:
error_img = create_error_image(str(e))
yield f"❌failed to upload images: {str(e)}", error_img
return
video_payload = ""
if video is not None:
if isinstance(video, (list, tuple)):
video_payload = video[0] if video else ""
else:
video_payload = video
# 将视频文件转换为Base64格式
try:
base64_video = video_to_base64(video_payload)
video_payload = base64_video
except Exception as e:
error_img = create_error_image(str(e))
yield f"❌ Failed to encode video: {str(e)}", error_img
return
payload = {
"context_scale": context_scale,
"enable_fast_mode": enable_fast_mode,
"enable_safety_checker": enable_safety_checker,
"flow_shift": flow_shift,
"guidance_scale": guidance_scale,
"images": base64_images,
"negative_prompt": negative_prompt,
"num_inference_steps": num_inference_steps,
"prompt": prompt,
"seed": seed if seed != -1 else random.randint(0, 999999),
"size": size,
"task": task,
"video": str(video_payload) if video_payload else "",
}
logging.debug(f"API request payload: {json.dumps(payload, indent=2)}")
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_KEY}",
}
try:
response = requests.post(
"https://api.wavespeed.ai/api/v2/wavespeed-ai/wan-2.1-14b-vace",
headers=headers,
data=json.dumps(payload)
)
if response.status_code != 200:
error_img = create_error_image(response.text)
yield f"❌ API Error ({response.status_code}): {response.text}", error_img
return
request_id = response.json()["data"]["id"]
yield f"✅ Task ID (ID: {request_id})", None
except Exception as e:
error_img = create_error_image(str(e))
yield f"❌ Connection Error: {str(e)}", error_img
return
result_url = f"https://api.wavespeed.ai/api/v2/predictions/{request_id}/result"
start_time = time.time()
while True:
time.sleep(0.5)
try:
response = requests.get(result_url, headers=headers)
if response.status_code != 200:
error_img = create_error_image(response.text)
yield f"❌ 轮询错误 ({response.status_code}): {response.text}", error_img
return
data = response.json()["data"]
status = data["status"]
if status == "completed":
elapsed = time.time() - start_time
video_url = data['outputs'][0]
session["history"].append(video_url)
yield (f"🎉 完成! 耗时 {elapsed:.1f}秒\n"
f"下载链接: {video_url}"), video_url
return
elif status == "failed":
error_img = create_error_image(data.get('error', '未知错误'))
yield f"❌ 任务失败: {data.get('error', '未知错误')}", error_img
return
else:
yield f"⏳ 状态: {status.capitalize()}...", None
except Exception as e:
error_img = create_error_image(str(e))
yield f"❌ 轮询失败: {str(e)}", error_img
return
def cleanup_task():
while True:
session_manager.cleanup_sessions()
time.sleep(3600)
with gr.Blocks(
theme=gr.themes.Soft(),
css="""
.video-preview { max-width: 600px !important; }
.status-box { padding: 10px; border-radius: 5px; margin: 5px; }
.safe { background: #e8f5e9; border: 1px solid #a5d6a7; }
.warning { background: #fff3e0; border: 1px solid #ffcc80; }
.error { background: #ffebee; border: 1px solid #ef9a9a; }
#centered_button {
align-self: center !important;
height: fit-content !important;
margin-top: 22px !important; # 根据输入框高度微调
}
"""
) as app:
session_id = gr.State(str(uuid.uuid4()))
gr.Markdown("# 🌊Wan-2.1-14B-Vace Run On [WaveSpeedAI](https://wavespeed.ai/)")
gr.Markdown("""VACE is an all-in-one model designed for video creation and editing. It encompasses various tasks, including reference-to-video generation (R2V), video-to-video editing (V2V), and masked video-to-video editing (MV2V), allowing users to compose these tasks freely. This functionality enables users to explore diverse possibilities and streamlines their workflows effectively, offering a range of capabilities, such as Move-Anything, Swap-Anything, Reference-Anything, Expand-Anything, Animate-Anything, and more.""")
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
images = gr.File(label="upload image", file_count="multiple", file_types=["image"], type="filepath", elem_id="image-uploader",
scale=1)
video = gr.Video(label="Input Video", format="mp4", sources=["upload"],
scale=1)
prompt = gr.Textbox(label="Prompt", lines=5, placeholder="Prompt")
negative_prompt = gr.Textbox(label="Negative Prompt", lines=2)
with gr.Row():
size = gr.Dropdown(["832*480", "480*832"], value="832*480", label="Size")
task = gr.Dropdown(["depth", "pose"], value="depth", label="Task")
with gr.Row():
num_inference_steps = gr.Slider(1, 100, value=30, step=1, label="Inference Steps")
context_scale = gr.Slider(0, 2, value=1, step=0.1, label="Context Scale")
with gr.Row():
guidance = gr.Slider(1, 20, value=5, step=0.1, label="Guidance_Scale")
flow_shift = gr.Slider(1, 20, value=16, step=1, label="Shift")
with gr.Row():
seed = gr.Number(-1, label="Seed")
random_seed_btn = gr.Button("Random🎲Seed", variant="secondary", elem_id="centered_button")
with gr.Row():
enable_safety_checker = gr.Checkbox(True, label="Enable Safety Checker", interactive=True)
enable_fast_mode = gr.Checkbox(True, label="To enable the fast mode, please visit Wave Speed AI", interactive=False)
with gr.Column(scale=1):
video_output = gr.Video(label="Video Output", format="mp4", interactive=False, elem_classes=["video-preview"])
generate_btn = gr.Button("Generate", variant="primary")
status_output = gr.Textbox(label="status", interactive=False, lines=4)
# gr.Examples(
# examples=[
# [
# "The elegant lady carefully selects bags in the boutique, and she shows the charm of a mature woman in a black slim dress with a pearl necklace, as well as her pretty face. Holding a vintage-inspired blue leather half-moon handbag, she is carefully observing its craftsmanship and texture. The interior of the store is a haven of sophistication and luxury. Soft, ambient lighting casts a warm glow over the polished wooden floors",
# [
# "https://d2g64w682n9w0w.cloudfront.net/media/ec44bbf6abac4c25998dd2c4af1a46a7/images/1747413751234102420_md9ywspl.png",
# "https://d2g64w682n9w0w.cloudfront.net/media/ec44bbf6abac4c25998dd2c4af1a46a7/images/1747413586520964413_7bkgc9ol.png"
# ]
# ]
# ],
# inputs=[prompt, images],
# )
random_seed_btn.click(
fn=lambda: random.randint(0, 999999),
outputs=seed
)
generate_btn.click(
generate_video,
inputs=[
context_scale,
enable_safety_checker,
enable_fast_mode,
flow_shift,
guidance,
images,
negative_prompt,
num_inference_steps,
prompt,
seed,
size,
task,
video,
session_id,
],
outputs=[status_output, video_output]
)
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("gradio_app.log"),
logging.StreamHandler()
]
)
gradio_logger = logging.getLogger("gradio")
gradio_logger.setLevel(logging.INFO)
if __name__ == "__main__":
threading.Thread(target=cleanup_task, daemon=True).start()
app.queue(max_size=2).launch(
server_name="0.0.0.0",
max_threads=10,
share=False
)