File size: 4,953 Bytes
a67076d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

import torch
import torch.nn.functional as F
from typing import Optional
from diffusers.models.attention_processor import Attention

class WanAttnProcessor2_0:
    def __init__(self, scale=4, attn_mask=None, neg_prompt_length=0):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("WanAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.")
        self.attn_mask = attn_mask
        self.neg_prompt_length = neg_prompt_length
        self.scale = scale

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        encoder_hidden_states_img = None
        if attn.add_k_proj is not None:
            # 512 is the context length of the text encoder, hardcoded for now
            image_context_length = encoder_hidden_states.shape[1] - 512
            encoder_hidden_states_img = encoder_hidden_states[:, :image_context_length]
            encoder_hidden_states = encoder_hidden_states[:, image_context_length:]
        cross_attn = False
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
            query = attn.to_q(hidden_states)
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)
        else:
            query = attn.to_q(hidden_states)
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)
            cross_attn = True
        
        if cross_attn and self.pos:
            # print(value.shape, self.neg_prompt_length)
            value[:,-self.neg_prompt_length:] *= -self.scale # should we flip before

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
        key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
        value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
        # print(self.pos) 

        if rotary_emb is not None:
            def apply_rotary_emb(
                hidden_states: torch.Tensor,
                freqs_cos: torch.Tensor,
                freqs_sin: torch.Tensor, 
            ):
                x = hidden_states.view(*hidden_states.shape[:-1], -1, 2)
                x1, x2 = x[..., 0], x[..., 1]
                cos = freqs_cos[..., 0::2]
                sin = freqs_sin[..., 1::2]
                out = torch.empty_like(hidden_states)
                out[..., 0::2] = x1 * cos - x2 * sin
                out[..., 1::2] = x1 * sin + x2 * cos
                return out.type_as(hidden_states)

            query = apply_rotary_emb(query, *rotary_emb)
            key = apply_rotary_emb(key, *rotary_emb)

        # I2V task
        hidden_states_img = None
        if encoder_hidden_states_img is not None:
            key_img = attn.add_k_proj(encoder_hidden_states_img)
            key_img = attn.norm_added_k(key_img)
            value_img = attn.add_v_proj(encoder_hidden_states_img)

            key_img = key_img.unflatten(2, (attn.heads, -1)).transpose(1, 2)
            value_img = value_img.unflatten(2, (attn.heads, -1)).transpose(1, 2)
            print(query.shape, key_img.shape, value_img.shape)
            hidden_states_img = F.scaled_dot_product_attention(
                query, key_img, value_img, attn_mask=None, dropout_p=0.0, is_causal=False
            )
            hidden_states_img = hidden_states_img.transpose(1, 2).flatten(2, 3)
            hidden_states_img = hidden_states_img.type_as(query)
            
        if self.attn_mask is not None: 
            self.attn_mask = self.attn_mask.to(query.dtype)
        if not self.pos:
            hidden_states = F.scaled_dot_product_attention(
                query, key, value, dropout_p=0.0, is_causal=False
            )
        else:
            hidden_states = F.scaled_dot_product_attention(
                query, key, value, attn_mask=self.attn_mask, dropout_p=0.0, is_causal=False
            )
        # if cross_attn:
        #   # print(hidden_states.shape)
        #   hidden_states_norm = torch.norm(hidden_states, dim=-1, keepdim=True)
        #   new_norm = torch.where(hidden_states_norm > max_norm * 2, max_norm * 2, hidden_states_norm)
        #   hidden_states = hidden_states * (new_norm / hidden_states_norm)
          
        hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
        hidden_states = hidden_states.type_as(query)

        if hidden_states_img is not None:
            hidden_states = hidden_states + hidden_states_img

        hidden_states = attn.to_out[0](hidden_states)
        hidden_states = attn.to_out[1](hidden_states)
        return hidden_states