File size: 30,022 Bytes
dc80a97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
import sys 
import os
project_dir = os.getcwd()
sys.path.append(project_dir)
import json 
from tqdm import tqdm
from goldfish_lv import GoldFish_LV,split_subtitles,time_to_seconds
import argparse
import json
import argparse
import torch
import re
from tqdm import tqdm
from PIL import Image
# from openai import OpenAI
from index import MemoryIndex  
import pysrt
import chardet
import torch
import random
import numpy as np
import torch.backends.cudnn as cudnn
def str2bool(v):
    if isinstance(v, bool):
        return v
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected.')

def get_arguments():
    parser = argparse.ArgumentParser(description="Inference parameters")
    parser.add_argument("--neighbours", type=int, default=-1)
    parser.add_argument("--name", type=str,default="ckpt_92",help="name of the experiment")
    parser.add_argument("--exp_name", type=str,default="",help="name of the experiment")
    parser.add_argument("--add_unknown", action='store_true')
    parser.add_argument("--use_chatgpt", action='store_true')
    parser.add_argument("--use_choices_for_info", action='store_true')
    parser.add_argument("--use_gt_information", action='store_true')
    parser.add_argument("--inference_text", action='store_true')
    parser.add_argument("--use_gt_information_with_distraction", action='store_true')
    parser.add_argument("--num_distraction", type=int, default=2)
    parser.add_argument("--add_confidance_score", action='store_true')
    parser.add_argument("--use_original_video", action='store_true')
    parser.add_argument("--use_video_embedding", action='store_true')
    parser.add_argument("--use_clips_for_info", action='store_true')
    parser.add_argument("--use_GT_video", action='store_true')
    parser.add_argument("--use_gt_summary", action='store_true')
    parser.add_argument("--index_subtitles_together", action='store_true')
    
    parser.add_argument("--ask_the_question_early", action='store_true')
    parser.add_argument("--clip_in_ask_early", action='store_true')
    parser.add_argument("--use_coherent_description", action='store_true')
    
    parser.add_argument("--start", default=0, type=int)
    parser.add_argument("--end", default=100000, type=int)
    
    parser.add_argument("--vision_only", action='store_true')
    parser.add_argument("--model_summary_only", action='store_true')
    parser.add_argument("--subtitles_only", action='store_true')
    parser.add_argument("--subtitles_only_after_retrieval", action='store_true')
    parser.add_argument("--info_only", action='store_true')
    
    parser.add_argument("--cfg-path", default="test_configs/llama2_test_config.yaml")
    parser.add_argument("--ckpt", type=str, default="checkpoints/video_llama_checkpoint_last.pth")
    parser.add_argument("--add_subtitles", action='store_true')
    parser.add_argument("--eval_opt", type=str, default='all')
    parser.add_argument("--max_new_tokens", type=int, default=300)
    parser.add_argument("--batch_size", type=int, default=8)
    parser.add_argument("--lora_r", type=int, default=64)
    parser.add_argument("--lora_alpha", type=int, default=16)
    parser.add_argument("--video_path", type=str, help="path to the video")
    parser.add_argument("--use_openai_embedding",type=str2bool, default=False)
    parser.add_argument("--annotation_path", type=str, help="path to the annotation file")
    parser.add_argument("--videos_frames", type=str, help="path to the dataset extracted frames")
    parser.add_argument("--tvqa_json_subtitles", type=str, help="path to the tvqa json subtitles")
    parser.add_argument("--tvqa_clips_subtitles", type=str, help="path to the tvqa json")  
    parser.add_argument("--options", nargs="+")
    return parser.parse_args()
   
def clean_text(subtitles_text):
    # Remove unwanted characters except for letters, digits, and single quotes
    subtitles_text = re.sub(r'[^a-zA-Z0-9\s\']', '', subtitles_text)
    # Replace multiple spaces with a single space
    subtitles_text = re.sub(r'\s+', ' ', subtitles_text)
    return subtitles_text.strip()
                     
class TVQAEVAL (GoldFish_LV):
    def __init__(self, args: argparse.Namespace) -> None:
        super().__init__(args)
        self.tv_shows_mapping={"Grey's Anatomy":"grey_frames", 'How I Met You Mother':"met_frames", 'Friends':"friends_frames", 'The Big Bang Theory':"bbt_frames", 'House M.D.':"house_frames", 'Castle':"castle_frames"} 
        self.save_long_videos_path = f"new_workspace/clips_summary/tvqa"
        if args.use_openai_embedding:
            self.save_embedding_path = f"new_workspace/open_ai_embedding/tvqa"
        else:
            self.save_embedding_path = f"new_workspace/embedding/tvqa"
        os.makedirs(self.save_long_videos_path, exist_ok=True)
        self.max_sub_len=400
        self.max_num_images=45
        self.fps=3
        with open(args.tvqa_json_subtitles) as f:
            self.subtitles_list=json.load(f)
        self.subtitles={}
        for sub in self.subtitles_list:
            self.subtitles[sub["vid_name"]]=sub["sub"]
     
    def _get_TVs_data(self):
        json_file_path=args.annotation_path
        frames_path=args.videos_frames
        subtitle_path=args.tvqa_clips_subtitles
        with open (json_file_path) as f:
            tv_shows_data=json.load(f)
        return tv_shows_data,frames_path,subtitle_path
    def _get_shows_subtitles(self,clip_subtitles_path):
        try :
            with open(clip_subtitles_path, 'rb') as f:
                result = chardet.detect(f.read())
            clip_subtitles = pysrt.open(clip_subtitles_path, encoding=result['encoding'])
            return clip_subtitles
        except:
            print("No subtitles found")
            return []
    def episode_inference(self,clips,folder_name,use_subtitles):
        max_caption_index = 0
        max_subtitle_index = 0
        preds={}
        important_data = {}
        videos_summaries=[]
        batch_size=args.batch_size
        batch_images=[]
        batch_instructions=[]
        conversations=[]
        clips_names=[]
        for clip_name in tqdm(clips,desc="Inference Episode clips"):
            conversation=""
            try:
                for subtitle in self.subtitles[clip_name]:
                    conversation+=subtitle['text']+" "
            except:
                pass
            conversations.append(clean_text(conversation))               
            images,img_placeholder=self.prepare_input_images(clip_name,folder_name,use_subtitles)
            instruction = img_placeholder + '\n' + self.summary_instruction
            batch_images.append(images)
            batch_instructions.append(instruction)
            clips_names.append(clip_name)
            if len(batch_images) < batch_size:
                continue
            batch_images = torch.stack(batch_images)
            batch_pred=self.run_images(batch_images,batch_instructions)
            for i,pred in enumerate(batch_pred):
                max_caption_index += 1
                videos_summaries.append(pred)
                if args.use_coherent_description:
                    preds[f'caption_{max_caption_index}__{clips_names[i]}'] = f"model_summary :{pred}\nVideo conversation :{conversations[i]}"
                else:
                    if args.index_subtitles_together and use_subtitles:
                        if conversations[i] != "":
                            max_subtitle_index+=1
                            important_data.update({f"subtitle_{max_subtitle_index}__{clips_names[i]}": conversations[i]})   
                    preds[f'caption_{max_caption_index}__{clips_names[i]}'] = pred
            
            batch_images=[]
            batch_instructions=[]
            clips_names=[]
            conversations=[]
        # run inference for the last batch
        if len(batch_images)>0:
            batch_images = torch.stack(batch_images)
            batch_pred=self.run_images(batch_images,batch_instructions)
            for i,pred in enumerate(batch_pred):
                max_caption_index += 1
                videos_summaries.append(pred)
                if args.use_coherent_description:
                    preds[f'caption_{max_caption_index}__{clips_names[i]}'] = f"model_summary :{pred}\nVideo conversation :{conversations[i]}"
                else:
                    if args.index_subtitles_together and use_subtitles:
                        if conversations[i] != "":
                            max_subtitle_index+=1
                            important_data.update({f"subtitle_{max_subtitle_index}__{clips_names[i]}": conversations[i]})   
                    preds[f'caption_{max_caption_index}__{clips_names[i]}'] = pred
            batch_images=[]
            batch_instructions=[]
            clips_names=[]
        return preds,important_data  
    
    def episode_inference_only_subtitles(self,clips,tv_images_path,subtitle_path):
        max_subtitle_index = 0
        important_data = {}
        for c_name in tqdm(clips,desc="Inference Episode clips"):
            clip_subtitles_path=os.path.join(subtitle_path,c_name+".srt")
            clip_subtitles=self._get_shows_subtitles(clip_subtitles_path)
            conversation=""
            if args.index_subtitles_together:
                if self.subtitles.get(c_name,False):
                    for subtitle in self.subtitles[c_name]:
                        conversation+=subtitle['text']+" "
                    conversation=clean_text(conversation)
                    if conversation != "":
                        max_subtitle_index+=1
                        important_data.update({f"subtitle_{max_subtitle_index}__{c_name}": conversation})
        return important_data 
    def prepare_input_images(self,clip_name,folder_name,use_subtitles):
        tv_shows_data,frames_path,subtitle_path=self._get_TVs_data()
        tv_images_path =os.path.join(frames_path,folder_name)
        clip_path=os.path.join(tv_images_path,clip_name)
        total_frames=len(os.listdir(clip_path))
        sampling_interval=int(total_frames//self.max_num_images)
        if sampling_interval==0:
            sampling_interval=1
        images=[]
        img_placeholder = ""
        video_frames_path = os.path.join(frames_path,folder_name,clip_name)
        total_num_frames=len(os.listdir(video_frames_path))
        sampling_interval = round(total_num_frames / self.max_num_images)
        if sampling_interval == 0:
            sampling_interval = 1
        subtitle_text_in_interval = ""
        history_subtitles = {}
        number_of_sub_words=0
        for i,frame in enumerate(sorted(os.listdir(video_frames_path))):
            # Find the corresponding subtitle for the frame and combine the interval subtitles into one subtitle
            # we choose 1 frame for every 2 seconds,so we need to combine the subtitles in the interval of 2 seconds
            if self.subtitles.get(clip_name,False) and use_subtitles:
                for subtitle in self.subtitles[clip_name]:
                    if (subtitle['start'] <= (i / self.fps) <= subtitle['end']) and subtitle['text'] not in subtitle_text_in_interval:
                        if not history_subtitles.get(subtitle['text'],False):
                            subtitle_text_in_interval+=subtitle['text']+" "
                        history_subtitles[subtitle['text']]=True
                        break
            if i % sampling_interval == 0:
                frame = Image.open(os.path.join(video_frames_path,frame)).convert("RGB") 
                frame = self.vis_processor(frame)
                images.append(frame)
                img_placeholder += '<Img><ImageHere>'
                if number_of_sub_words<self.max_sub_len and use_subtitles:
                    if subtitle_text_in_interval != "":
                        subtitle_text_in_interval=clean_text(subtitle_text_in_interval)
                        img_placeholder+=f'<Cap>{subtitle_text_in_interval}'
                        number_of_sub_words+=len(subtitle_text_in_interval.split(' '))
                        subtitle_text_in_interval = ""
            if len(images) >= self.max_num_images:
                break
        if len(images) ==0:
            print("Video not found",video_frames_path)
            
        if 0 <len(images) < self.max_num_images:
            last_item = images[-1]
            while len(images) < self.max_num_images:
                images.append(last_item)
                img_placeholder += '<Img><ImageHere>'
        images = torch.stack(images)
        return images,img_placeholder
    def clip_inference(self,clips_name,folders_name,prompts):
        setup_seeds(seed)
        images_batch, instructions_batch = [], []
        for clip_name,folder_name, prompt in zip(clips_name,folders_name, prompts):
            images,img_placeholder=self.prepare_input_images(clip_name,folder_name,use_subtitles=not args.vision_only)
            instruction = img_placeholder + '\n' + prompt
            images_batch.append(images)
            instructions_batch.append(instruction)
        # run inference for the batch
        images_batch=torch.stack(images_batch)
        batch_pred=self.run_images(images_batch,instructions_batch)
        return batch_pred
    def prepare_prompt(self,qa):
        prompt=qa["q"]+" \n\n As you watched in this video Choose ONE suitable answer from these mutiple choices \n"
        for i,choice in enumerate(["a0","a1","a2","a3","a4"]):
            prompt+=f"option {i}: {qa[choice]} \n"
        if args.add_unknown and args.add_confidance_score:
            # Add unknown option
            prompt+=f"option 5: Can't answer based on the provided information\n"
            prompt+="\n Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 5 INCLUSIVE and aslo output a CONFIDANCE SCORE FROM 0 TO 5 representing how confident you are with your answer where 0 is the least confident and 5 is the most confident"
        elif args.add_unknown:
            prompt+=f"option 5: Can't answer based on the provided information\n"
            prompt+="\n Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 5 INCLUSIVE"
        elif args.add_confidance_score:
            prompt+="\n Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 4 INCLUSIVE and aslo output a CONFIDANCE SCORE FROM 0 TO 5 representing how confident you are with your answer where 0 is the least confident and 5 is the most confident"
        else:
            prompt+="\n Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 4 INCLUSIVE"
        return prompt
    def get_most_related_clips(self,qa,related_context_keys):
        if args.use_gt_information:
            most_related_clips=[qa['vid_name']]
        elif args.use_gt_information_with_distraction:
            most_related_clips=[qa['vid_name']]
            for context_key in related_context_keys:
                if len(context_key.split('__'))>1:
                    most_related_clips.append(context_key.split('__')[1])
                if len(most_related_clips)==args.num_distraction+1:
                    break
        else:
            most_related_clips=[]
            for context_key in related_context_keys:
                if len(context_key.split('__'))>1:
                    most_related_clips.append(context_key.split('__')[1])
                if len(most_related_clips)==args.neighbours:
                    break
        assert len(most_related_clips)!=0, f"No related clips found {related_context_keys}"
        return most_related_clips
    def use_clips_for_info(self,qa_list,related_context_keys_list,external_memory):
        total_batch_pred=[]
        questions=[]
        related_information_list=[]
        related_context_keys_list_new=[]
        for qa,related_context_keys in zip(qa_list,related_context_keys_list):
            most_related_clips=self.get_most_related_clips(qa,related_context_keys)
            folder_name=self.tv_shows_mapping[qa['show_name']]
            question=qa['q']+ "\nand these are the choices :\n"
            for i,choice in enumerate(["a0","a1","a2","a3","a4"]):
                question+=f"option {i}: {qa[choice]} \n"
            if args.add_unknown:    
                question+= "option 5: Can't answer based on the provided information\n"
                question+="\n Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 5 INCLUSIVE"
            else:
                question+="\n Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 4 INCLUSIVE"
            if args.use_choices_for_info:
                # prompt=self.prepare_prompt(qa)
                # prompt+=" and also provide an EXPLAINATION for your answer and If you don't know the answer, say that you don't know.\n\n"
                prompt=f"From this video extract the related information to This multichioce question and provide an explaination for your answer and If you don't know the answer, say 'I DON'T KNOW' as option 5 because maybe the questoin is not related to the video content.\n the question is :\n {question}\n your answer :"

            else:
                prompt=f"As you watched in this video answer this {qa['q']}\n\n and also provide an EXPLAINATION for your answer and If you don't know the answer, say that you don't know.\n\n"
            all_info=self.clip_inference(most_related_clips,[folder_name]*len(most_related_clips),[prompt]*len(most_related_clips))
            # concatinate all the information together
            related_information=""
            for info,clip_name in zip(all_info,most_related_clips):
                clip_conversation=""
                general_sum=""
                for key in external_memory.documents.keys():
                    if clip_name in key and 'caption' in key:
                        general_sum="Clip Summary: "+external_memory.documents[key]
                    if clip_name in key and 'subtitle' in key:
                        clip_conversation="Clip Subtitles: "+external_memory.documents[key]
                
                if args.use_coherent_description:
                    related_information+=f"question_related_information: {info},{general_sum}\n"
                else:
                    # related_information+=f"{general_sum},{clip_conversation},question_related_information: {info}\n"  
                    # related_information+=f"question_related_information: {info},{clip_conversation}\n"
                    if args.model_summary_only:
                            related_information+=f"{general_sum},question_related_information: {info}\n"
                    elif args.info_only:
                        related_information+=f"question_related_information: {info}\n"
                    elif args.subtitles_only:
                        related_information+=f"{clip_conversation},question_related_information: {info}\n"
                    elif args.subtitles_only_after_retrieval:
                        related_information+=f"{clip_conversation},question_related_information: {info}\n"
                    else:
                        related_information+=f"{general_sum},{clip_conversation},question_related_information: {info}\n" 
                    
            questions.append(question)
            related_information_list.append(related_information)
            related_context_keys.append(related_information)
            related_context_keys_list_new.append(related_context_keys)
            if len(questions)< args.batch_size:
                continue 
            setup_seeds(seed)
            if args.use_chatgpt :
                batch_pred=self.inference_RAG_chatGPT(questions, related_information_list)
            else:
                batch_pred=self.inference_RAG(questions, related_information_list)
            
            for pred in batch_pred:
                total_batch_pred.append(pred)
            questions=[]
            related_information_list=[]
        
        if len(questions)>0:
            setup_seeds(seed)
            if args.use_chatgpt :
                batch_pred=self.inference_RAG_chatGPT(questions, related_information_list)
            else:
                batch_pred=self.inference_RAG(questions, related_information_list)
            for pred in batch_pred:
                total_batch_pred.append(pred)
        return total_batch_pred,related_context_keys_list_new   
    def answer_TV_questions_RAG(self,qa_list,external_memory,episode_clips,episode_name):
        related_context_keys_list,related_context_documents_list=[],[]
        setup_seeds(seed)
        for qa in qa_list:
            question_choices=qa['q']+ "\n and these are the options for the question\n\n"
            for i,choice in enumerate(["a0","a1","a2","a3","a4"]):
                question_choices+=f"option {i}: {qa[choice]} \n\n"
            related_context_documents,related_context_keys = external_memory.search_by_similarity(question_choices)
            
            related_context_documents_list.append(related_context_documents)
            related_context_keys_list.append(related_context_keys) 

        if args.use_clips_for_info:
            batch_pred,related_context_keys_list=self.use_clips_for_info(qa_list,related_context_keys_list,external_memory)
        else:
            prompts=[]
            related_context_documents_text_list=[]
            for qa,related_context_documents,related_context_keys in zip(qa_list,related_context_documents_list,related_context_keys_list): 

                related_information=""
                most_related_clips=self.get_most_related_clips(qa,related_context_keys)
                for clip_name in most_related_clips:
                    clip_conversation=""
                    general_sum=""
                    for key in external_memory.documents.keys():
                        if clip_name in key and 'caption' in key:
                            general_sum="Clip Summary: "+external_memory.documents[key]
                        if clip_name in key and 'subtitle' in key:
                            clip_conversation="Clip Subtitles: "+external_memory.documents[key]
                    # related_information+=f"{general_sum},{clip_conversation}\n"
                    if args.use_coherent_description:
                        related_information+=f"{general_sum}\n"
                    else:
                        if args.model_summary_only:
                            related_information+=f"{general_sum}\n"
                        elif args.subtitles_only:
                            related_information+=f"{clip_conversation}\n"
                        else:
                            related_information+=f"{general_sum},{clip_conversation}\n"
                    
                prompt=self.prepare_prompt(qa)
                prompts.append(prompt)
                related_context_documents_text_list.append(related_information)
                
            setup_seeds(seed)
            if args.use_chatgpt:
                batch_pred=self.inference_RAG_chatGPT(prompts, related_context_documents_text_list)
            else:
                batch_pred=self.inference_RAG(prompts, related_context_documents_text_list)
        return batch_pred ,related_context_keys_list 
    def answer_episode_questions(self,questions,information_RAG_path,embedding_path,episode_clips):
        external_memory=MemoryIndex(args.neighbours, use_openai=args.use_openai_embedding)
        if os.path.exists(embedding_path):
            external_memory.load_embeddings_from_pkl(embedding_path)
        else:
            external_memory.load_documents_from_json(information_RAG_path,embedding_path)    
        episode_name=information_RAG_path.split('/')[-1].split('.')[0]
        pred_json=[]
        batch_questions=[]
        for qa in tqdm(questions,desc="Answering questions"):
            batch_questions.append(qa)
            if len(batch_questions)<args.batch_size:
                continue
            batch_pred,batch_related_context_keys = self.answer_TV_questions_RAG(batch_questions,external_memory,episode_clips,episode_name)
            for pred,related_context_keys,qa in zip(batch_pred,batch_related_context_keys,batch_questions):
                qa['pred']=pred
                qa['related_context_keys']=related_context_keys
                pred_json.append(qa)
            batch_questions=[]
        if len(batch_questions)>0:
            batch_pred,batch_related_context_keys = self.answer_TV_questions_RAG(batch_questions,external_memory,episode_clips,episode_name)
            for pred,related_context_keys,qa in zip(batch_pred,batch_related_context_keys,batch_questions):
                qa['pred']=pred
                qa['related_context_keys']=related_context_keys
                pred_json.append(qa)
        return pred_json
             
    def eval_tv_shows(self,):
        tv_shows_data,frames_path,subtitle_path=self._get_TVs_data()
        full_questions_result=[]
        number_of_episodes=0
        start=args.start
        end=args.end
        for show in tqdm(tv_shows_data,desc="Inference TV shows"):
            for season in tqdm(tv_shows_data[show],desc=f"Inference {show} seasons"):
                for episode in tqdm(tv_shows_data[show][season],desc=f"Inference {show} {season} episodes"):
                    # Generate clips summary and store the important data (summary and subtitles) in json file
                    if start<=number_of_episodes<end: 
                        folder_name=self.tv_shows_mapping[show]
                        tv_images_path =os.path.join(frames_path,folder_name)
                        os.makedirs(self.save_long_videos_path, exist_ok=True)
                        save_name="" if args.index_subtitles_together else "no_subtitles_"
                        save_name="subtitles_only" if args.subtitles_only else save_name
                        save_name="use_coherent_description" if args.use_coherent_description else save_name
                        file_path=os.path.join(self.save_long_videos_path,save_name+folder_name+"_"+season+"_"+episode+".json")
                        embedding_path=os.path.join(self.save_embedding_path,save_name+folder_name+"_"+season+"_"+episode+".pkl")
                        # options don't require rerunning the inference
                        save_name+="_unknown" if args.add_unknown else ""
                        save_name+="_clips_for_info" if args.use_clips_for_info else ""
                        save_name+="_chatgpt" if args.use_chatgpt else ""
                        save_name+="_choices_for_info" if args.use_choices_for_info else ""
                        save_name+="_info_only" if args.info_only else ""
                        save_name+="_subtitles_only" if args.subtitles_only else ""
                        save_name+="_subtitles_only_after_retrieval" if args.subtitles_only_after_retrieval else ""
                        if os.path.exists(file_path):
                            with open(file_path, 'r') as file:
                                important_data = json.load(file)
                            print("Already processed")
                        else:
                            episode_clips=tv_shows_data[show][season][episode]['clips']
                            if args.subtitles_only :
                                important_data=self.episode_inference_only_subtitles(episode_clips,tv_images_path,subtitle_path)
                            else:
                                preds,important_data=self.episode_inference(episode_clips,folder_name,use_subtitles=not args.vision_only)
                                important_data.update(preds)
                            # if not args.subtitles_only :
                            #     summary = self.compine_summaries(important_data)
                            #     preds['summary'] = summary
                            #     important_data["summary"]=summary
                            with open(file_path, 'w') as file:
                                json.dump(important_data, file, indent=4)
                        # Answer questions 
                        questions=tv_shows_data[show][season][episode]['questions']
                        episode_clips=tv_shows_data[show][season][episode]['clips']
                        episode_name=file_path.split('/')[-1].split('.')[0]
                        pred_json=self.answer_episode_questions(questions,file_path,embedding_path,episode_clips)
                        full_questions_result.extend(pred_json)
                        save_dir=f"new_workspace/results/tvqa/{args.exp_name}/{save_name}_{args.neighbours}_neighbours"
                        os.makedirs(save_dir, exist_ok=True)
                        with open(f"{save_dir}/{episode_name}.json", 'w') as fp:
                            json.dump(pred_json, fp)
                        print(f"Episode {episode_name} prediction saved to {save_dir}/{episode_name}_pred_{args.neighbours}.json")
                    number_of_episodes+=1
        with open(f"{save_dir}/full_pred_{start}_{end}.json", 'w') as fp:
            json.dump(full_questions_result, fp)
        print(f"TV shows prediction saved to {save_dir}/full_pred_{start}{end}.json")
args=get_arguments()

def setup_seeds(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    cudnn.benchmark = False
    cudnn.deterministic = True

import yaml 
with open('test_configs/llama2_test_config.yaml') as file:
    config = yaml.load(file, Loader=yaml.FullLoader)
seed=config['run']['seed']
print("seed",seed)

if __name__ == "__main__":
    setup_seeds(seed)
    tvqa_eval=TVQAEVAL(args)
    tvqa_eval.eval_tv_shows()