Spaces:
Running
Running
File size: 16,484 Bytes
dc80a97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import torch
import webvtt
import os
import cv2
from minigpt4.common.eval_utils import prepare_texts, init_model, eval_parser, eval_bleu,eval_cider,chat_gpt_eval
from minigpt4.conversation.conversation import CONV_VISION
from torchvision import transforms
import json
from tqdm import tqdm
import soundfile as sf
import argparse
import moviepy.editor as mp
import gradio as gr
from pytubefix import YouTube
from moviepy.editor import VideoFileClip
from theme import minigptlv_style, custom_css,text_css
import re
from transformers import TextIteratorStreamer
from threading import Thread
import cv2
import torch
import random
import numpy as np
import torch.backends.cudnn as cudnn
import webvtt
from bisect import bisect_left
import whisper
from datetime import timedelta
# Function to format timestamps for VTT
def format_timestamp(seconds):
td = timedelta(seconds=seconds)
total_seconds = int(td.total_seconds())
milliseconds = int(td.microseconds / 1000)
hours, remainder = divmod(total_seconds, 3600)
minutes, seconds = divmod(remainder, 60)
return f"{hours:02}:{minutes:02}:{seconds:02}.{milliseconds:03}"
def extract_video_info(video_path,max_images_length):
clip = VideoFileClip(video_path)
total_num_frames = int(clip.duration * clip.fps)
clip.close()
sampling_interval = int(total_num_frames / max_images_length)
if sampling_interval == 0:
sampling_interval = 1
return sampling_interval,clip.fps
def time_to_milliseconds(time_str):
# Convert time format "hh:mm:ss.sss" to milliseconds
h, m, s = map(float, time_str.split(':'))
return int((h * 3600 + m * 60 + s) * 1000)
def extract_subtitles(subtitle_path):
# Parse the VTT file into a list of (start_time_ms, end_time_ms, text)
subtitles = []
for caption in webvtt.read(subtitle_path):
start_ms = time_to_milliseconds(caption.start)
end_ms = time_to_milliseconds(caption.end)
text = caption.text.strip().replace('\n', ' ')
subtitles.append((start_ms, end_ms, text))
return subtitles
def find_subtitle(subtitles, frame_count, fps):
frame_time = (frame_count / fps)*1000
left, right = 0, len(subtitles) - 1
while left <= right:
mid = (left + right) // 2
start, end, subtitle_text = subtitles[mid]
# print("Mid start end sub ",mid,start,end,subtitle_text)
if start <= frame_time <= end:
return subtitle_text
elif frame_time < start:
right = mid - 1
else:
left = mid + 1
return None # If no subtitle is found
def match_frames_and_subtitles(video_path,subtitles,sampling_interval,max_sub_len,fps,max_frames):
cap = cv2.VideoCapture(video_path)
images = []
frame_count = 0
img_placeholder = ""
subtitle_text_in_interval = ""
history_subtitles = {}
number_of_words=0
transform=transforms.Compose([
transforms.ToPILImage(),
])
# first_frame=cap.read()[1]
# video_out=cv2.VideoWriter("old_prepare_input.mp4",cv2.VideoWriter_fourcc(*'mp4v'), 1, (first_frame.shape[1],first_frame.shape[0]))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if len (subtitles) > 0:
# use binary search to find the subtitle for the current frame which the frame time is between the start and end time of the subtitle
frame_subtitle=find_subtitle(subtitles, frame_count, fps)
if frame_subtitle and not history_subtitles.get(frame_subtitle,False):
subtitle_text_in_interval+=frame_subtitle+" "
history_subtitles[frame_subtitle]=True
if frame_count % sampling_interval == 0:
# raw_frame=frame.copy()
frame = transform(frame[:,:,::-1]) # convert to RGB
frame = vis_processor(frame)
images.append(frame)
img_placeholder += '<Img><ImageHere>'
if subtitle_text_in_interval != "" and number_of_words< max_sub_len:
img_placeholder+=f'<Cap>{subtitle_text_in_interval}'
# write the subtitle on the frame
# cv2.putText(raw_frame,subtitle_text_in_interval,(10,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),2)
number_of_words+=len(subtitle_text_in_interval.split(' '))
subtitle_text_in_interval = ""
# video_out.write(raw_frame)
frame_count += 1
if len(images) >= max_frames:
break
cap.release()
cv2.destroyAllWindows()
# video_out.release()
if len(images) == 0:
# skip the video if no frame is extracted
return None,None
images = torch.stack(images)
return images,img_placeholder
def prepare_input(video_path, subtitle_path,instruction):
if "mistral" in args.ckpt :
max_frames=90
max_sub_len = 800
else:
max_frames = 45
max_sub_len = 400
sampling_interval,fps = extract_video_info(video_path, max_frames)
subtitles = extract_subtitles(subtitle_path)
frames_features,input_placeholder = match_frames_and_subtitles(video_path,subtitles,sampling_interval,max_sub_len,fps,max_frames)
input_placeholder+="\n"+instruction
return frames_features, input_placeholder
def extract_audio(video_path, audio_path):
video_clip = mp.VideoFileClip(video_path)
audio_clip = video_clip.audio
audio_clip.write_audiofile(audio_path, codec="libmp3lame", bitrate="320k")
def get_subtitles(video_path) :
audio_dir="workspace/inference_subtitles/mp3"
subtitle_dir="workspace/inference_subtitles"
os.makedirs(subtitle_dir, exist_ok=True)
os.makedirs(audio_dir, exist_ok=True)
video_id=video_path.split('/')[-1].split('.')[0]
audio_path = f"workspace/inference_subtitles/mp3/{video_id}"+'.mp3'
subtitle_path = f"{subtitle_dir}/{video_id}"+'.vtt'
# if the subtitles are already generated, return the path of the subtitles
if os.path.exists(subtitle_path):
return f"{subtitle_dir}/{video_id}"+'.vtt'
audio_path = f"{audio_dir}/{video_id}"+'.mp3'
try:
extract_audio(video_path, audio_path)
result = whisper_model.transcribe(audio_path,language="en")
# Create VTT file
with open(subtitle_path, "w", encoding="utf-8") as vtt_file:
vtt_file.write("WEBVTT\n\n")
for segment in result['segments']:
start = format_timestamp(segment['start'])
end = format_timestamp(segment['end'])
text = segment['text']
vtt_file.write(f"{start} --> {end}\n{text}\n\n")
return subtitle_path
except Exception as e:
print(f"Error during subtitle generation for {video_path}: {e}")
return None
def stream_answer(generation_kwargs):
streamer = TextIteratorStreamer(model.llama_tokenizer, skip_special_tokens=True)
generation_kwargs['streamer'] = streamer
thread = Thread(target=model_generate, kwargs=generation_kwargs)
thread.start()
return streamer
def escape_markdown(text):
# List of Markdown special characters that need to be escaped
md_chars = ['<', '>']
# Escape each special character
for char in md_chars:
text = text.replace(char, '\\' + char)
return text
def model_generate(*args, **kwargs):
# for 8 bit and 16 bit compatibility
with model.maybe_autocast():
output = model.llama_model.generate(*args, **kwargs)
return output
def generate_prediction (video_path,instruction,gen_subtitles=True,stream=False):
if gen_subtitles:
subtitle_path=get_subtitles(video_path)
else :
subtitle_path=None
prepared_images,prepared_instruction=prepare_input(video_path,subtitle_path,instruction)
if prepared_images is None:
return "Video cann't be open ,check the video path again"
length=len(prepared_images)
prepared_images=prepared_images.unsqueeze(0)
conv = CONV_VISION.copy()
conv.system = ""
# if you want to make conversation comment the 2 lines above and make the conv is global variable
conv.append_message(conv.roles[0], prepared_instruction)
conv.append_message(conv.roles[1], None)
prompt = [conv.get_prompt()]
# print("prompt",prompt)
if stream:
generation_kwargs = model.answer_prepare_for_streaming(prepared_images, prompt, max_new_tokens=args.max_new_tokens, do_sample=True, lengths=[length],num_beams=1)
streamer=stream_answer(generation_kwargs)
print("Streamed answer:",end='')
for a in streamer:
print(a,end='')
print()
else:
setup_seeds(seed)
answers = model.generate(prepared_images, prompt, max_new_tokens=args.max_new_tokens, do_sample=True, lengths=[length],num_beams=1)
return answers[0]
def is_youtube_url(url: str) -> bool:
youtube_regex = (
r'(https?://)?(www\.)?'
'(youtube|youtu|youtube-nocookie)\.(com|be)/'
'(watch\?v=|embed/|v/|.+\?v=)?([^&=%\?]{11})'
)
return bool(re.match(youtube_regex, url))
def download_video(youtube_url, download_finish):
if is_youtube_url(youtube_url):
video_id=youtube_url.split('v=')[-1].split('&')[0]
# Create a YouTube object
youtube = YouTube(youtube_url)
# Get the best available video stream
video_stream = youtube.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
# if has_subtitles:
# Download the video to the workspace folder
print('Downloading video')
os.makedirs("workspace/tmp",exist_ok=True)
video_stream.download(output_path="workspace/tmp",filename=f"{video_id}.mp4")
print('Video downloaded successfully')
processed_video_path= f"workspace/tmp/{video_id}.mp4"
download_finish = gr.State(value=True)
return processed_video_path, download_finish
else:
return None, download_finish
def get_video_url(url):
# get video id from url
video_id=url.split('v=')[-1].split('&')[0]
# Create a YouTube object
youtube = YouTube(url)
# Get the best available video stream
video_stream = youtube.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
# if has_subtitles:
# Download the video to the workspace folder
print('Downloading video')
video_stream.download(output_path="workspace",filename=f"{video_id}.mp4")
print('Video downloaded successfully')
return f"workspace/{video_id}.mp4"
def get_arguments():
parser = argparse.ArgumentParser(description="Inference parameters")
parser.add_argument("--cfg-path", help="path to configuration file.",default="test_configs/llama2_test_config.yaml")
parser.add_argument("--ckpt", type=str,default='checkpoints/video_llama_checkpoint_last.pth', help="path to checkpoint")
parser.add_argument("--max_new_tokens", type=int, default=512, help="max number of generated tokens")
parser.add_argument("--lora_r", type=int, default=64, help="lora rank of the model")
parser.add_argument("--lora_alpha", type=int, default=16, help="lora alpha")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
return parser.parse_args()
args=get_arguments()
def setup_seeds(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
import yaml
with open('test_configs/llama2_test_config.yaml') as file:
config = yaml.load(file, Loader=yaml.FullLoader)
seed=config['run']['seed']
print("seed",seed)
# 🔧 GPU内存优化 - 在模型加载前执行
import os
import torch
import gc
print("🔍 开始GPU内存优化...")
# 设置环境变量优化内存分配
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:256,garbage_collection_threshold:0.6'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
if torch.cuda.is_available():
# 显示当前GPU状态
print(f"🔍 GPU: {torch.cuda.get_device_name(0)}")
print(f"💾 总显存: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB")
# 强制清理所有GPU缓存
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
# 强制垃圾回收
gc.collect()
# 设置内存增长策略
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
print(f"💾 清理后可用显存: {(torch.cuda.get_device_properties(0).total_memory - torch.cuda.memory_allocated(0)) / 1024**3:.1f} GB")
print("🚀 开始初始化模型...")
model, vis_processor,whisper_gpu_id,minigpt4_gpu_id,answer_module_gpu_id = init_model(args)
# 再次清理缓存
if torch.cuda.is_available():
torch.cuda.empty_cache()
print(f"💾 模型加载后显存使用: {torch.cuda.memory_allocated(0) / 1024**3:.1f} GB")
print("🚀 开始初始化Whisper...")
whisper_model=whisper.load_model("large").to(f"cuda:{whisper_gpu_id}")
# 最终状态
if torch.cuda.is_available():
print(f"💾 全部加载后显存使用: {torch.cuda.memory_allocated(0) / 1024**3:.1f} GB")
print("✅ 所有模型加载完成!")
conv = CONV_VISION.copy()
conv.system = ""
def gradio_demo_local(video_path,has_sub,instruction):
pred=generate_prediction(video_path,instruction,gen_subtitles=has_sub)
return pred
def gradio_demo_youtube(youtube_url,has_sub,instruction):
video_path=get_video_url(youtube_url)
pred=generate_prediction(video_path,instruction,gen_subtitles=has_sub)
return pred
title = """<h1 align="center">MiniGPT4-video 🎞️🍿</h1>"""
description = """<h5>This is the demo of MiniGPT4-video Model.</h5>"""
project_details="""<div style="text-align: center;">
<div>
<font size=3>
<div>
<a href="https://vision-cair.github.io/MiniGPT4-video/">🎞️ Project Page</a>
<a href="https://arxiv.org/abs/2404.03413">📝 arXiv Paper</a>
</div>
</font>
</div>
</div>"""
video_path=""
with gr.Blocks(title="MiniGPT4-video 🎞️🍿",css=text_css ) as demo :
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown(project_details)
with gr.Tab("Local videos"):
with gr.Row():
with gr.Column():
video_player_local = gr.Video(sources=["upload"])
question_local = gr.Textbox(label="Your Question", placeholder="Default: What's this video talking about?")
has_subtitles_local = gr.Checkbox(label="Use subtitles", value=True)
process_button_local = gr.Button("Answer the Question (QA)")
with gr.Column():
answer_local=gr.Text("Answer will be here",label="MiniGPT4-video Answer")
process_button_local.click(fn=gradio_demo_local, inputs=[video_player_local, has_subtitles_local, question_local], outputs=[answer_local])
with gr.Tab("Youtube videos"):
with gr.Row():
with gr.Column():
youtube_link = gr.Textbox(label="Enter the youtube link", placeholder="Paste YouTube URL with this format 'https://www.youtube.com/watch?v=video_id'")
video_player = gr.Video(autoplay=False)
download_finish = gr.State(value=False)
youtube_link.change(
fn=download_video,
inputs=[youtube_link, download_finish],
outputs=[video_player, download_finish]
)
question = gr.Textbox(label="Your Question", placeholder="Default: What's this video talking about?")
has_subtitles = gr.Checkbox(label="Use subtitles", value=True)
process_button = gr.Button("Answer the Question (QA)")
with gr.Column():
answer=gr.Text("Answer will be here",label="MiniGPT4-video Answer")
process_button.click(fn=gradio_demo_youtube, inputs=[youtube_link, has_subtitles, question], outputs=[answer])
if __name__ == "__main__":
demo.queue().launch(share=True,show_error=True)
|