#!/usr/bin/env python # -*- coding: utf-8 -*- import os import time import json import argparse import torch import cv2 import moviepy.editor as mp import webvtt import re from typing import Optional, List from tqdm import tqdm from PIL import Image from torchvision import transforms from pytubefix import YouTube from minigpt4.common.eval_utils import init_model from minigpt4.conversation.conversation import CONV_VISION from index import MemoryIndex import pysrt import chardet from openai import OpenAI if os.getenv("OPENAI_API_KEY") is not None: client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) else: client = OpenAI(api_key="") from transformers import AutoTokenizer, AutoModelForCausalLM import re from transformers import BitsAndBytesConfig # from split_long_video_in_parallel import split_video import transformers import whisper from datetime import timedelta # Function to format timestamps for VTT def format_timestamp(seconds): td = timedelta(seconds=seconds) total_seconds = int(td.total_seconds()) milliseconds = int(td.microseconds / 1000) hours, remainder = divmod(total_seconds, 3600) minutes, seconds = divmod(remainder, 60) return f"{hours:02}:{minutes:02}:{seconds:02}.{milliseconds:03}" def clean_text(subtitles_text): # Remove unwanted characters except for letters, digits, spaces, periods, commas, exclamation marks, and single quotes subtitles_text = re.sub(r'[^a-zA-Z0-9\s\']', '', subtitles_text) # Replace multiple spaces with a single space subtitles_text = re.sub(r'\s+', ' ', subtitles_text) return subtitles_text.strip() def time_to_seconds(subrip_time): return subrip_time.hours * 3600 + subrip_time.minutes * 60 + subrip_time.seconds + subrip_time.milliseconds / 1000 def split_subtitles(subtitle_path, n): # read the subtitle file and detect the encoding with open(subtitle_path, 'rb') as f: result = chardet.detect(f.read()) subs = pysrt.open(subtitle_path, encoding=result['encoding']) total_subs = len(subs) if n <= 0 or n > total_subs: print("Invalid value for n. It should be a positive integer less than or equal to the total number of subtitles.") return None subs_per_paragraph = total_subs // n remainder = total_subs % n paragraphs = [] current_index = 0 for i in range(n): num_subs_in_paragraph = subs_per_paragraph + (1 if i < remainder else 0) paragraph_subs = subs[current_index:current_index + num_subs_in_paragraph] current_index += num_subs_in_paragraph # Join subtitles using pysrt's built-in method for efficient formatting paragraph = pysrt.SubRipFile(items=paragraph_subs).text paragraphs.append(paragraph) return paragraphs class GoldFish_LV: """ 'GoldFish_LV' class is to handle long video processing and subtitle management with MiniGPT4_video base model. """ def __init__(self, args: argparse.Namespace) -> None: self.args = args self.model, self.vis_processor,whisper_gpu_id,minigpt4_gpu_id,answer_module_gpu_id = init_model(args) self.whisper_gpu_id=whisper_gpu_id self.minigpt4_gpu_id=minigpt4_gpu_id self.answer_module_gpu_id=answer_module_gpu_id # self.original_llama_model,self.original_llama_tokenizer=self.load_original_llama_model() # self.original_llama_model=self.load_original_llama_model_vllm() self.llama_3_1_model=self.load_llama3_1_model() self.whisper_model=whisper.load_model("large",device=f"cuda:{self.whisper_gpu_id}") # self.summary_instruction="Generate a description of this video .Pay close attention to the objects, actions, emotions portrayed in the video,providing a vivid description of key moments.Specify any visual cues or elements that stand out." self.summary_instruction="I'm a blind person, please provide me with a detailed summary of the video content and try to be as descriptive as possible." def load_original_llama_model(self): model_name="meta-llama/Meta-Llama-3-8B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.pad_token = "[PAD]" tokenizer.padding_side = "left" bnb_config = BitsAndBytesConfig( load_in_8bit=True, ) llama_model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map={'': f"cuda:{self.answer_module_gpu_id}"}, quantization_config=bnb_config, ) return llama_model,tokenizer def load_llama3_1_model(self): model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct" bnb_config = BitsAndBytesConfig( load_in_8bit=True, ) self.llama3_tokenizer = AutoTokenizer.from_pretrained(model_id) llama3_model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map={'': f"cuda:{self.answer_module_gpu_id}"}, quantization_config=bnb_config, ) pipeline = transformers.pipeline( "text-generation", model=llama3_model, tokenizer=self.llama3_tokenizer, model_kwargs={"torch_dtype": torch.bfloat16}, device_map=f"cuda:{self.answer_module_gpu_id}", ) return pipeline def _youtube_download(self, url: str) -> str: try: video_id = url.split('v=')[-1].split('&')[0] video_id = video_id.strip() print(f"Downloading video with ID: {video_id}") youtube = YouTube(f"https://www.youtube.com/watch?v={video_id}") video_stream = youtube.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first() if not video_stream: raise ValueError("No suitable video stream found.") output_path = f"workspace/tmp/{video_id}.mp4" self.video_id=video_id video_stream.download(output_path="workspace/tmp", filename=f"{video_id}.mp4") return output_path except Exception as e: print(f"Error downloading video: {e}") return url @staticmethod def is_youtube_url(url: str) -> bool: youtube_regex = ( r'(https?://)?(www\.)?' '(youtube|youtu|youtube-nocookie)\.(com|be)/' '(watch\?v=|embed/|v/|.+\?v=)?([^&=%\?]{11})' ) return bool(re.match(youtube_regex, url)) def process_video_url(self, video_path: str) -> str: if self.is_youtube_url(video_path): return self._youtube_download(video_path) else: return video_path def create_video_grid(self, images: list, rows: int, cols: int, save_path: str) -> Image.Image: image_width, image_height = images[0].size grid_width = cols * image_width grid_height = rows * image_height new_image = Image.new("RGB", (grid_width, grid_height)) for i in range(rows): for j in range(cols): index = i * cols + j if index < len(images): image = images[index] x_offset = j * image_width y_offset = i * image_height new_image.paste(image, (x_offset, y_offset)) new_image.save(save_path) return new_image def get_subtitles(self, video_path) : video_name=video_path.split('/')[-2] video_id=video_path.split('/')[-1].split('.')[0] audio_dir = f"workspace/audio/{video_name}" subtitle_dir = f"workspace/subtitles/{video_name}" os.makedirs(audio_dir, exist_ok=True) os.makedirs(subtitle_dir, exist_ok=True) # if the subtitles are already generated, return the path of the subtitles subtitle_path = f"{subtitle_dir}/{video_id}"+'.vtt' if os.path.exists(subtitle_path): return f"{subtitle_dir}/{video_id}"+'.vtt' audio_path = f"{audio_dir}/{video_id}"+'.mp3' try: self.extract_audio(video_path, audio_path) subtitle_path = f"{subtitle_dir}/{video_id}"+'.vtt' result = self.whisper_model.transcribe(audio_path,language="en") # Create VTT file with open(subtitle_path, "w", encoding="utf-8") as vtt_file: vtt_file.write("WEBVTT\n\n") for segment in result['segments']: start = format_timestamp(segment['start']) end = format_timestamp(segment['end']) text = segment['text'] vtt_file.write(f"{start} --> {end}\n{text}\n\n") return subtitle_path except Exception as e: print(f"Error during subtitle generation for {video_path}: {e}") return None def prepare_input(self, video_path: str, subtitle_path: Optional[str], instruction: str,previous_caption=""): # If a subtitle path is provided, read the VTT (Web Video Text Tracks) file, else set to an empty list conversation="" if subtitle_path: vtt_file = webvtt.read(subtitle_path) print("Subtitle loaded successfully") try: for subtitle in vtt_file: sub = subtitle.text.replace('\n',' ') conversation+=sub except: pass if self.model.model_type == "Mistral": max_images_length=90 max_sub_len = 800 else: max_images_length = 45 max_sub_len = 400 # Load the video file using moviepy and calculate the total number of frames clip = mp.VideoFileClip(video_path) total_num_frames = int(clip.duration * clip.fps) clip.close() # Calculate how often to sample a frame based on the total number of frames and the maximum images length cap = cv2.VideoCapture(video_path) images = [] frame_count = 0 sampling_interval = int(total_num_frames / max_images_length) if sampling_interval == 0: sampling_interval = 1 # Initialize variables to hold image placeholders, current subtitle text, and subtitle history if previous_caption != "": img_placeholder = previous_caption+" " else: img_placeholder = "" subtitle_text_in_interval = "" history_subtitles = {} raw_frames=[] number_of_words=0 transform=transforms.Compose([ transforms.ToPILImage(), ]) # Loop through each frame in the video while cap.isOpened(): ret, frame = cap.read() if not ret: break # TODO: we need to add subtitles in external memory either if subtitle_path is not None: for i, subtitle in enumerate(vtt_file): sub = subtitle.text.replace('\n',' ') if (subtitle.start_in_seconds <= (frame_count / int(clip.fps)) <= subtitle.end_in_seconds) and sub not in subtitle_text_in_interval: if not history_subtitles.get(sub, False): subtitle_text_in_interval += sub + " " history_subtitles[sub] = True break # Process and store the frame at specified intervals if frame_count % sampling_interval == 0: raw_frames.append(Image.fromarray(cv2.cvtColor(frame.copy(), cv2.COLOR_BGR2RGB))) frame = transform(frame[:,:,::-1]) # convert to RGB frame = self.vis_processor(frame) images.append(frame) img_placeholder += '' if subtitle_path is not None and subtitle_text_in_interval != "" and number_of_words< max_sub_len: img_placeholder+=f'{subtitle_text_in_interval}' number_of_words+=len(subtitle_text_in_interval.split(' ')) subtitle_text_in_interval = "" frame_count += 1 # Break the loop if the maximum number of images is reached if len(images) >= max_images_length: break cap.release() cv2.destroyAllWindows() # Return None if no images are extracted if len(images) == 0: return None, None while len(images) < max_images_length: images.append(images[-1]) img_placeholder += '' images = torch.stack(images) print("Input instruction length",len(instruction.split(' '))) instruction = img_placeholder + '\n' + instruction print("number of words",number_of_words) print("number of images",len(images)) return images, instruction,conversation def extract_audio(self, video_path: str, audio_path: str) -> None: video_clip = mp.VideoFileClip(video_path) audio_clip = video_clip.audio audio_clip.write_audiofile(audio_path, codec="libmp3lame", bitrate="320k") def short_video_inference (self,video_path,instruction,gen_subtitles=True): if gen_subtitles: subtitle_path=self.get_subtitles(video_path) else : subtitle_path=None prepared_images,prepared_instruction,video_conversation=self.prepare_input(video_path,subtitle_path,instruction) if prepared_images is None: return "Video cann't be open ,check the video path again" length=len(prepared_images) prepared_images=prepared_images.unsqueeze(0) conv = CONV_VISION.copy() conv.system = "" # if you want to make conversation comment the 2 lines above and make the conv is global variable conv.append_message(conv.roles[0], prepared_instruction) conv.append_message(conv.roles[1], None) prompt = [conv.get_prompt()] answers = self.model.generate(prepared_images, prompt, max_new_tokens=512, do_sample=False, lengths=[length],num_beams=1) return answers[0] def split_long_video_into_clips(self,video_path): # Split the video into 90 seconds clips and make a queue of the videos and run the inference on each video self.video_name=video_path.split('/')[-1].split('.')[0] tmp_save_path=f"workspace/tmp/{self.video_name}" os.makedirs(tmp_save_path, exist_ok=True) print("tmp_save_path",tmp_save_path) if len(os.listdir(tmp_save_path)) == 0: print("Splitting Long video") os.system(f"python split_long_video_in_parallel.py --video_path {video_path} --output_folder {tmp_save_path}") # split_video(video_path, tmp_save_path, clip_duration=90) videos_list = sorted(os.listdir(tmp_save_path)) return videos_list,tmp_save_path def long_inference_video(self, videos_list,tmp_save_path,subtitle_paths) -> Optional[str]: save_long_videos_path = "new_workspace/clips_summary/demo" os.makedirs(save_long_videos_path, exist_ok=True) file_path = f'{save_long_videos_path}/{self.video_name}.json' if os.path.exists(file_path): print("Clips inference already done") with open(file_path, 'r') as file: video_information = json.load(file) else: video_number = 0 batch_size = self.args.batch_size batch_video_paths, batch_instructions ,batch_subtitles= [], [],[] video_information = {} video_captions = [] for i, video in tqdm(enumerate(videos_list), desc="Inference video clips", total=len(videos_list)): clip_path = os.path.join(tmp_save_path, video) batch_video_paths.append(clip_path) # previous_caption = "You are analysing a one long video of mutiple clips and this is the summary from all previous clips :"+video_captions[-1]+"\n\n" if video_captions else "" previous_caption="" batch_instructions.append(self.summary_instruction) batch_subtitles.append(subtitle_paths[i]) # Process each batch if len(batch_video_paths) % batch_size == 0 and i != 0: batch_preds,videos_conversation=self.run_batch(batch_video_paths,batch_instructions, batch_subtitles,previous_caption) for pred,subtitle in zip(batch_preds,videos_conversation): video_number += 1 save_name=f"{video_number}".zfill(5) if pred != "": video_information[f'caption__{save_name}'] = pred if subtitle != "": video_information[f'subtitle__{save_name}'] = subtitle video_captions.append(pred) batch_video_paths, batch_instructions,batch_subtitles = [], [],[] # Process any remaining videos in the last batch if batch_video_paths: batch_preds,videos_conversation=self.run_batch(batch_video_paths,batch_instructions, batch_subtitles,previous_caption) for pred,subtitle in zip(batch_preds,videos_conversation): video_number += 1 save_name=f"{video_number}".zfill(5) if pred != "": video_information[f'caption__{save_name}'] = pred if subtitle != "": video_information[f'subtitle__{save_name}'] = subtitle video_captions.append(pred) with open(file_path, 'w') as file: json.dump(video_information, file, indent=4) print("Clips inference done") return video_information # def inference_RAG(self, instructions, context_list): # context_promots=[] # questions_prompts=[] # try: # for instruction,context in zip(instructions,context_list): # context=clean_text(context) # context_prompt=f"[INST] Your task is to answer questions for one long video which is split into multiple clips.\nGiven these related information from the most related clips: \n{context}\n" # question_prompt=f"\nAnswer this question :{instruction} \n your answer is: [/INST]" # context_promots.append(context_prompt) # questions_prompts.append(question_prompt) # context_inputs = self.original_llama_tokenizer(context_promots, return_tensors="pt", padding=True, truncation=True,max_length=3500) # # print(context_inputs.keys()) # print("context_inputs shape",context_inputs['input_ids'].shape) # question_inputs = self.original_llama_tokenizer(questions_prompts, return_tensors="pt", padding=True, truncation=True,max_length=300) # print("question_inputs shape",question_inputs['input_ids'].shape) # # concate the context and the question together # inputs_ids=torch.cat((context_inputs['input_ids'],question_inputs['input_ids']),dim=1).to('cuda') # print("inputs shape",inputs_ids.shape) # except Exception as e: # print("error while tokenization",e) # return self.inference_RAG_batch_size_1(instructions, context_list) # with torch.no_grad(): # summary_ids = self.original_llama_model.generate(inputs_ids,max_new_tokens=512) # answers=[] # for i in range(len(summary_ids)): # output_text=self.original_llama_tokenizer.decode(summary_ids[i], skip_special_tokens=True) # output_text = output_text.split('')[0] # remove the stop sign # output_text = output_text.replace("", "") # output_text = output_text.split(r'[/INST]')[-1].strip() # answers.append(output_text) # return answers def inference_RAG(self, instructions, context_list): messages=[] for instruction,context in zip(instructions,context_list): context=clean_text(context) context_prompt=f"Your task is to answer a specific question based on one long video. While you cannot view the video yourself, I will supply you with the most relevant text information from the most pertinent clips. \n{context}\n" question_prompt=f"\nPlease provide a detailed and accurate answer to the following question:{instruction} \n Your answer should be:" # limit the context words to 10000 word duo to hardware limitation context_words=context_prompt.split(' ') truncated_context=' '.join(context_words[:10000]) print("Number of words",len((truncated_context+question_prompt).split(' '))) messages.append([{"role": "user", "content": truncated_context+question_prompt}]) outputs=self.llama_3_1_model(messages, max_new_tokens=512) answers=[] for out in outputs: answers.append(out[0]["generated_text"][-1]['content']) return answers # def inference_RAG(self, instructions, context_list): # prompts=[] # for instruction,context in zip(instructions,context_list): # context=clean_text(context) # context_prompt=f"Your task is to answer questions for one long video which is split into multiple clips.\nGiven these related information from the most related clips: \n{context}\n" # question_prompt=f"\nAnswer this question :{instruction} \n your answer is:" # prompts.append(context_prompt+question_prompt) # with open('prompts.txt','w') as f: # for prompt in prompts: # f.write(prompt+'\n') # outputs=self.original_llama_model.generate(prompts) # answers=[] # for out in outputs: # answers.append(out.outputs[0].text) # return answers def inference_RAG_batch_size_1(self, instructions, context_list): answers=[] for instruction,context in zip(instructions,context_list): context=clean_text(context) context_prompt=f"[INST] Your task is to answer questions for one long video which is split into multiple clips.\nGiven these related information from the most related clips: \n{context}\n" question_prompt=f"\nAnswer this question :{instruction} \n your answer is: [/INST]" context_inputs=self.original_llama_tokenizer([context_prompt], return_tensors="pt", padding=True, truncation=True,max_length=3500)['input_ids'] question_inputs=self.original_llama_tokenizer([question_prompt], return_tensors="pt", padding=True, truncation=True,max_length=300)['input_ids'] inputs_ids=torch.cat((context_inputs,question_inputs),dim=1).to('cuda') with torch.no_grad(): summary_ids = self.original_llama_model.generate(inputs_ids,max_new_tokens=512,) output_text=self.original_llama_tokenizer.decode(summary_ids[0], skip_special_tokens=True) output_text = output_text.split('')[0] # remove the stop sign output_text = output_text.replace("", "") output_text = output_text.split(r'[/INST]')[-1].strip() answers.append(output_text) return answers # def inference_RAG_text_only(self, instructions, context_list): # # Use VideoLLM as the answer module # seg_tokens=[] # for instruction,context in zip(instructions,context_list): # context=clean_text(context) # context_prompt=f"[INST] Your task is to answer questions for one long video which is split into multiple clips.\nGiven these related information from the most related clips: \n{context}\n" # question_prompt=f"\nAnswer this question :{instruction} \n your answer is: [/INST]" # context_inputs = self.model.llama_tokenizer(context_prompt,add_special_tokens=True, return_tensors="pt", padding=True, truncation=True,max_length=3500) # question_inputs = self.model.llama_tokenizer(question_prompt, return_tensors="pt", padding=True, truncation=True,max_length=300) # # concate the context and the question together # inputs_ids=torch.cat((context_inputs['input_ids'],question_inputs['input_ids']),dim=1).to('cuda') # seg_tokens.append(inputs_ids) # with torch.no_grad(): # answers = self.model.generate_text_only(images=None,seg_tokens=seg_tokens,max_new_tokens=512) # return answers def inference_RAG_chatGPT(self, instructions: str, context_list) -> str: batch_preds=[] for context,instruction in zip(context_list,instructions): prompt="Your task is to answer questions for long video \n\n Given these related information from the most related clips: \n "+context +"\n\n" +"Answer this question: "+instruction while True: try: response = client.ChatCompletion.create( model="gpt-4o", messages=[ { "role": "user", "content": prompt }], ) answer=response.choices[0].message['content'] batch_preds.append(answer) break except Exception as e: print("chat gpt error",e) time.sleep(50) return batch_preds def get_most_related_clips(self,related_context_keys): most_related_clips=set() for context_key in related_context_keys: if len(context_key.split('__'))>1: most_related_clips.add(context_key.split('__')[1]) if len(most_related_clips)==self.args.neighbours: break assert len(most_related_clips)!=0, f"No related clips found {related_context_keys}" return list(most_related_clips) def get_related_context(self, external_memory,related_context_keys): related_information="" most_related_clips=self.get_most_related_clips(related_context_keys) for clip_name in most_related_clips: clip_conversation="" general_sum="" for key in external_memory.documents.keys(): if clip_name in key and 'caption' in key: general_sum="Clip Summary: "+external_memory.documents[key] if clip_name in key and 'subtitle' in key: clip_conversation="Clip Subtitles: "+external_memory.documents[key] related_information+=f"{general_sum},{clip_conversation}\n" return related_information def inference(self,video_path, use_subtitles=True, instruction="", number_of_neighbours=3): start_time = time.time() video_name = os.path.splitext(os.path.basename(video_path))[0] self.args.neighbours = number_of_neighbours print(f"Video name: {video_name}") video_duration = mp.VideoFileClip(video_path).duration print(f"Video duration: {video_duration:.2f} seconds") # if the video duration is more than 2 minutes we need to run the long inference if video_duration > 180 : print("Long video") # if the video data is already stored in the external memory, we can use it directly else we need to run the long inference file_path=f'new_workspace/clips_summary/demo/{video_name}.json' if not os.path.exists(file_path): print("Clips summary is not ready") videos_list,tmp_save_path=self.split_long_video_into_clips(video_path) subtitle_paths = [] for video_p in videos_list: clip_path = os.path.join(tmp_save_path, video_p) subtitle_path = self.get_subtitles(clip_path) if use_subtitles else None subtitle_paths.append(subtitle_path) clips_summary = self.long_inference_video(videos_list,tmp_save_path,subtitle_paths) else: print("External memory is ready") os.makedirs("new_workspace/embedding/demo", exist_ok=True) os.makedirs("new_workspace/open_ai_embedding/demo", exist_ok=True) if self.args.use_openai_embedding: embedding_path=f"new_workspace/open_ai_embedding/demo/{video_name}.pkl" else: embedding_path=f"new_workspace/embedding/demo/{video_name}.pkl" external_memory=MemoryIndex(self.args.neighbours,use_openai=self.args.use_openai_embedding) if os.path.exists(embedding_path): print("Loading embeddings from pkl file") external_memory.load_embeddings_from_pkl(embedding_path) else: # will embed the information and save it in the pkl file external_memory.load_documents_from_json(file_path,embedding_path) # get the most similar context from the external memory to this instruction related_context_documents,related_context_keys = external_memory.search_by_similarity(instruction) related_information=self.get_related_context(external_memory,related_context_keys) pred=self.inference_RAG([instruction],[related_information]) else: print("Short video") self.video_name=video_path.split('/')[-1].split('.')[0] pred=self.short_video_inference(video_path,instruction,use_subtitles) processing_time = time.time() - start_time print(f"Processing time: {processing_time:.2f} seconds") return { 'video_name': os.path.splitext(os.path.basename(video_path))[0], 'pred': pred, } def run_batch(self, video_paths, instructions,subtitle_paths,previous_caption="") -> List[str]: prepared_images_batch = [] prepared_instructions_batch = [] lengths_batch = [] videos_conversations=[] for i,video_path, instruction in zip(range(len(video_paths)),video_paths, instructions): subtitle_path = subtitle_paths[i] prepared_images, prepared_instruction,video_conversation = self.prepare_input( video_path, subtitle_path, instruction,previous_caption) if prepared_images is None: print(f"Error: Unable to open video at {video_path}. Check the path and try again.") continue videos_conversations.append(video_conversation) conversation = CONV_VISION.copy() conversation.system = "" conversation.append_message(conversation.roles[0], prepared_instruction) conversation.append_message(conversation.roles[1], None) prepared_instructions_batch.append(conversation.get_prompt()) prepared_images_batch.append(prepared_images) lengths_batch.append(len(prepared_images)) if not prepared_images_batch: return [] prepared_images_batch = torch.stack(prepared_images_batch) answers=self.model.generate(prepared_images_batch, prepared_instructions_batch, max_new_tokens=self.args.max_new_tokens, do_sample=False, lengths=lengths_batch, num_beams=1) return answers , videos_conversations def run_images_features (self,img_embeds,prepared_instruction): lengths=[] prompts=[] for i in range(img_embeds.shape[0]): conv = CONV_VISION.copy() conv.system = "" conv.append_message(conv.roles[0], prepared_instruction[i]) conv.append_message(conv.roles[1], None) prompts.append(conv.get_prompt()) lengths.append(len(img_embeds[i])) answers = self.model.generate(images=None,img_embeds=img_embeds,texts=prompts, max_new_tokens=300, do_sample=False, lengths=lengths,num_beams=1) return answers def run_images (self,prepared_images,prepared_instruction): lengths=[] prompts=[] for i in range(prepared_images.shape[0]): conv = CONV_VISION.copy() conv.system = "" conv.append_message(conv.roles[0], prepared_instruction[i]) conv.append_message(conv.roles[1], None) prompts.append(conv.get_prompt()) lengths.append(len(prepared_images[i])) answers = self.model.generate(prepared_images, prompts, max_new_tokens=300, do_sample=False, lengths=lengths,num_beams=1) return answers