import torch import webvtt import os import cv2 from minigpt4.common.eval_utils import prepare_texts, init_model, eval_parser, eval_bleu,eval_cider,chat_gpt_eval from minigpt4.conversation.conversation import CONV_VISION from torchvision import transforms import json from tqdm import tqdm import soundfile as sf import argparse import moviepy.editor as mp import gradio as gr from pytubefix import YouTube from moviepy.editor import VideoFileClip from theme import minigptlv_style, custom_css,text_css import re from transformers import TextIteratorStreamer from threading import Thread import cv2 import torch import random import numpy as np import torch.backends.cudnn as cudnn import webvtt from bisect import bisect_left import whisper from datetime import timedelta # Function to format timestamps for VTT def format_timestamp(seconds): td = timedelta(seconds=seconds) total_seconds = int(td.total_seconds()) milliseconds = int(td.microseconds / 1000) hours, remainder = divmod(total_seconds, 3600) minutes, seconds = divmod(remainder, 60) return f"{hours:02}:{minutes:02}:{seconds:02}.{milliseconds:03}" def extract_video_info(video_path,max_images_length): clip = VideoFileClip(video_path) total_num_frames = int(clip.duration * clip.fps) clip.close() sampling_interval = int(total_num_frames / max_images_length) if sampling_interval == 0: sampling_interval = 1 return sampling_interval,clip.fps def time_to_milliseconds(time_str): # Convert time format "hh:mm:ss.sss" to milliseconds h, m, s = map(float, time_str.split(':')) return int((h * 3600 + m * 60 + s) * 1000) def extract_subtitles(subtitle_path): # Parse the VTT file into a list of (start_time_ms, end_time_ms, text) subtitles = [] for caption in webvtt.read(subtitle_path): start_ms = time_to_milliseconds(caption.start) end_ms = time_to_milliseconds(caption.end) text = caption.text.strip().replace('\n', ' ') subtitles.append((start_ms, end_ms, text)) return subtitles def find_subtitle(subtitles, frame_count, fps): frame_time = (frame_count / fps)*1000 left, right = 0, len(subtitles) - 1 while left <= right: mid = (left + right) // 2 start, end, subtitle_text = subtitles[mid] # print("Mid start end sub ",mid,start,end,subtitle_text) if start <= frame_time <= end: return subtitle_text elif frame_time < start: right = mid - 1 else: left = mid + 1 return None # If no subtitle is found def match_frames_and_subtitles(video_path,subtitles,sampling_interval,max_sub_len,fps,max_frames): cap = cv2.VideoCapture(video_path) images = [] frame_count = 0 img_placeholder = "" subtitle_text_in_interval = "" history_subtitles = {} number_of_words=0 transform=transforms.Compose([ transforms.ToPILImage(), ]) # first_frame=cap.read()[1] # video_out=cv2.VideoWriter("old_prepare_input.mp4",cv2.VideoWriter_fourcc(*'mp4v'), 1, (first_frame.shape[1],first_frame.shape[0])) while cap.isOpened(): ret, frame = cap.read() if not ret: break if len (subtitles) > 0: # use binary search to find the subtitle for the current frame which the frame time is between the start and end time of the subtitle frame_subtitle=find_subtitle(subtitles, frame_count, fps) if frame_subtitle and not history_subtitles.get(frame_subtitle,False): subtitle_text_in_interval+=frame_subtitle+" " history_subtitles[frame_subtitle]=True if frame_count % sampling_interval == 0: # raw_frame=frame.copy() frame = transform(frame[:,:,::-1]) # convert to RGB frame = vis_processor(frame) images.append(frame) img_placeholder += '' if subtitle_text_in_interval != "" and number_of_words< max_sub_len: img_placeholder+=f'{subtitle_text_in_interval}' # write the subtitle on the frame # cv2.putText(raw_frame,subtitle_text_in_interval,(10,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),2) number_of_words+=len(subtitle_text_in_interval.split(' ')) subtitle_text_in_interval = "" # video_out.write(raw_frame) frame_count += 1 if len(images) >= max_frames: break cap.release() cv2.destroyAllWindows() # video_out.release() if len(images) == 0: # skip the video if no frame is extracted return None,None images = torch.stack(images) return images,img_placeholder def prepare_input(video_path, subtitle_path,instruction): if "mistral" in args.ckpt : max_frames=90 max_sub_len = 800 else: max_frames = 45 max_sub_len = 400 sampling_interval,fps = extract_video_info(video_path, max_frames) subtitles = extract_subtitles(subtitle_path) frames_features,input_placeholder = match_frames_and_subtitles(video_path,subtitles,sampling_interval,max_sub_len,fps,max_frames) input_placeholder+="\n"+instruction return frames_features, input_placeholder def extract_audio(video_path, audio_path): video_clip = mp.VideoFileClip(video_path) audio_clip = video_clip.audio audio_clip.write_audiofile(audio_path, codec="libmp3lame", bitrate="320k") def get_subtitles(video_path) : audio_dir="workspace/inference_subtitles/mp3" subtitle_dir="workspace/inference_subtitles" os.makedirs(subtitle_dir, exist_ok=True) os.makedirs(audio_dir, exist_ok=True) video_id=video_path.split('/')[-1].split('.')[0] audio_path = f"workspace/inference_subtitles/mp3/{video_id}"+'.mp3' subtitle_path = f"{subtitle_dir}/{video_id}"+'.vtt' # if the subtitles are already generated, return the path of the subtitles if os.path.exists(subtitle_path): return f"{subtitle_dir}/{video_id}"+'.vtt' audio_path = f"{audio_dir}/{video_id}"+'.mp3' try: extract_audio(video_path, audio_path) result = whisper_model.transcribe(audio_path,language="en") # Create VTT file with open(subtitle_path, "w", encoding="utf-8") as vtt_file: vtt_file.write("WEBVTT\n\n") for segment in result['segments']: start = format_timestamp(segment['start']) end = format_timestamp(segment['end']) text = segment['text'] vtt_file.write(f"{start} --> {end}\n{text}\n\n") return subtitle_path except Exception as e: print(f"Error during subtitle generation for {video_path}: {e}") return None def stream_answer(generation_kwargs): streamer = TextIteratorStreamer(model.llama_tokenizer, skip_special_tokens=True) generation_kwargs['streamer'] = streamer thread = Thread(target=model_generate, kwargs=generation_kwargs) thread.start() return streamer def escape_markdown(text): # List of Markdown special characters that need to be escaped md_chars = ['<', '>'] # Escape each special character for char in md_chars: text = text.replace(char, '\\' + char) return text def model_generate(*args, **kwargs): # for 8 bit and 16 bit compatibility with model.maybe_autocast(): output = model.llama_model.generate(*args, **kwargs) return output def generate_prediction (video_path,instruction,gen_subtitles=True,stream=False): if gen_subtitles: subtitle_path=get_subtitles(video_path) else : subtitle_path=None prepared_images,prepared_instruction=prepare_input(video_path,subtitle_path,instruction) if prepared_images is None: return "Video cann't be open ,check the video path again" length=len(prepared_images) prepared_images=prepared_images.unsqueeze(0) conv = CONV_VISION.copy() conv.system = "" # if you want to make conversation comment the 2 lines above and make the conv is global variable conv.append_message(conv.roles[0], prepared_instruction) conv.append_message(conv.roles[1], None) prompt = [conv.get_prompt()] # print("prompt",prompt) if stream: generation_kwargs = model.answer_prepare_for_streaming(prepared_images, prompt, max_new_tokens=args.max_new_tokens, do_sample=True, lengths=[length],num_beams=1) streamer=stream_answer(generation_kwargs) print("Streamed answer:",end='') for a in streamer: print(a,end='') print() else: setup_seeds(seed) answers = model.generate(prepared_images, prompt, max_new_tokens=args.max_new_tokens, do_sample=True, lengths=[length],num_beams=1) return answers[0] def is_youtube_url(url: str) -> bool: youtube_regex = ( r'(https?://)?(www\.)?' '(youtube|youtu|youtube-nocookie)\.(com|be)/' '(watch\?v=|embed/|v/|.+\?v=)?([^&=%\?]{11})' ) return bool(re.match(youtube_regex, url)) def download_video(youtube_url, download_finish): if is_youtube_url(youtube_url): video_id=youtube_url.split('v=')[-1].split('&')[0] # Create a YouTube object youtube = YouTube(youtube_url) # Get the best available video stream video_stream = youtube.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first() # if has_subtitles: # Download the video to the workspace folder print('Downloading video') os.makedirs("workspace/tmp",exist_ok=True) video_stream.download(output_path="workspace/tmp",filename=f"{video_id}.mp4") print('Video downloaded successfully') processed_video_path= f"workspace/tmp/{video_id}.mp4" download_finish = gr.State(value=True) return processed_video_path, download_finish else: return None, download_finish def get_video_url(url): # get video id from url video_id=url.split('v=')[-1].split('&')[0] # Create a YouTube object youtube = YouTube(url) # Get the best available video stream video_stream = youtube.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first() # if has_subtitles: # Download the video to the workspace folder print('Downloading video') video_stream.download(output_path="workspace",filename=f"{video_id}.mp4") print('Video downloaded successfully') return f"workspace/{video_id}.mp4" def get_arguments(): parser = argparse.ArgumentParser(description="Inference parameters") parser.add_argument("--cfg-path", help="path to configuration file.",default="test_configs/llama2_test_config.yaml") parser.add_argument("--ckpt", type=str,default='checkpoints/video_llama_checkpoint_last.pth', help="path to checkpoint") parser.add_argument("--max_new_tokens", type=int, default=512, help="max number of generated tokens") parser.add_argument("--lora_r", type=int, default=64, help="lora rank of the model") parser.add_argument("--lora_alpha", type=int, default=16, help="lora alpha") parser.add_argument( "--options", nargs="+", help="override some settings in the used config, the key-value pair " "in xxx=yyy format will be merged into config file (deprecate), " "change to --cfg-options instead.", ) return parser.parse_args() args=get_arguments() def setup_seeds(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) cudnn.benchmark = False cudnn.deterministic = True import yaml with open('test_configs/llama2_test_config.yaml') as file: config = yaml.load(file, Loader=yaml.FullLoader) seed=config['run']['seed'] print("seed",seed) # 🔧 GPU内存优化 - 在模型加载前执行 import os import torch import gc print("🔍 开始GPU内存优化...") # 设置环境变量优化内存分配 os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:256,garbage_collection_threshold:0.6' os.environ['CUDA_LAUNCH_BLOCKING'] = '1' if torch.cuda.is_available(): # 显示当前GPU状态 print(f"🔍 GPU: {torch.cuda.get_device_name(0)}") print(f"💾 总显存: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB") # 强制清理所有GPU缓存 torch.cuda.empty_cache() torch.cuda.ipc_collect() # 强制垃圾回收 gc.collect() # 设置内存增长策略 torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True print(f"💾 清理后可用显存: {(torch.cuda.get_device_properties(0).total_memory - torch.cuda.memory_allocated(0)) / 1024**3:.1f} GB") print("🚀 开始初始化模型...") model, vis_processor,whisper_gpu_id,minigpt4_gpu_id,answer_module_gpu_id = init_model(args) # 再次清理缓存 if torch.cuda.is_available(): torch.cuda.empty_cache() print(f"💾 模型加载后显存使用: {torch.cuda.memory_allocated(0) / 1024**3:.1f} GB") print("🚀 开始初始化Whisper...") whisper_model=whisper.load_model("large").to(f"cuda:{whisper_gpu_id}") # 最终状态 if torch.cuda.is_available(): print(f"💾 全部加载后显存使用: {torch.cuda.memory_allocated(0) / 1024**3:.1f} GB") print("✅ 所有模型加载完成!") conv = CONV_VISION.copy() conv.system = "" def gradio_demo_local(video_path,has_sub,instruction): pred=generate_prediction(video_path,instruction,gen_subtitles=has_sub) return pred def gradio_demo_youtube(youtube_url,has_sub,instruction): video_path=get_video_url(youtube_url) pred=generate_prediction(video_path,instruction,gen_subtitles=has_sub) return pred title = """

MiniGPT4-video 🎞️🍿

""" description = """
This is the demo of MiniGPT4-video Model.
""" project_details="""
""" video_path="" with gr.Blocks(title="MiniGPT4-video 🎞️🍿",css=text_css ) as demo : gr.Markdown(title) gr.Markdown(description) gr.Markdown(project_details) with gr.Tab("Local videos"): with gr.Row(): with gr.Column(): video_player_local = gr.Video(sources=["upload"]) question_local = gr.Textbox(label="Your Question", placeholder="Default: What's this video talking about?") has_subtitles_local = gr.Checkbox(label="Use subtitles", value=True) process_button_local = gr.Button("Answer the Question (QA)") with gr.Column(): answer_local=gr.Text("Answer will be here",label="MiniGPT4-video Answer") process_button_local.click(fn=gradio_demo_local, inputs=[video_player_local, has_subtitles_local, question_local], outputs=[answer_local]) with gr.Tab("Youtube videos"): with gr.Row(): with gr.Column(): youtube_link = gr.Textbox(label="Enter the youtube link", placeholder="Paste YouTube URL with this format 'https://www.youtube.com/watch?v=video_id'") video_player = gr.Video(autoplay=False) download_finish = gr.State(value=False) youtube_link.change( fn=download_video, inputs=[youtube_link, download_finish], outputs=[video_player, download_finish] ) question = gr.Textbox(label="Your Question", placeholder="Default: What's this video talking about?") has_subtitles = gr.Checkbox(label="Use subtitles", value=True) process_button = gr.Button("Answer the Question (QA)") with gr.Column(): answer=gr.Text("Answer will be here",label="MiniGPT4-video Answer") process_button.click(fn=gradio_demo_youtube, inputs=[youtube_link, has_subtitles, question], outputs=[answer]) if __name__ == "__main__": demo.queue().launch(share=True,show_error=True)