Spaces:
Sleeping
Sleeping
File size: 14,572 Bytes
8f8d0f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
from fastapi import FastAPI, HTTPException, Query
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List, Optional, Dict, Any
import asyncio
import logging
from datetime import datetime
import json
# Import our modules
from scraper import NewsletterScraper
from nlp import SentimentAnalyzer, KeywordExtractor
from summarizer import TextSummarizer
from translator import MultilingualTranslator
from tts import AudioGenerator
from utils import setup_logging, cache_results
# Setup logging
setup_logging()
logger = logging.getLogger(__name__)
# FastAPI app
app = FastAPI(
title="Global Business News Intelligence API",
description="Advanced news analysis with sentiment, summarization, and multilingual support",
version="1.0.0"
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class AnalysisRequest(BaseModel):
query: str
num_articles: int = 20
languages: List[str] = ["English"]
include_audio: bool = True
sentiment_models: List[str] = ["VADER", "Loughran-McDonald", "FinBERT"]
class AnalysisResponse(BaseModel):
query: str
total_articles: int
processing_time: float
average_sentiment: float
sentiment_distribution: Dict[str, int]
articles: List[Dict[str, Any]]
keywords: List[Dict[str, Any]]
summary: Dict[str, Any]
languages: List[str]
audio_files: Optional[Dict[str, str]] = None
class NewsAnalyzer:
"""Main news analysis orchestrator"""
def __init__(self):
self.scraper = NewsletterScraper()
self.sentiment_analyzer = SentimentAnalyzer()
self.keyword_extractor = KeywordExtractor()
self.summarizer = TextSummarizer()
self.translator = MultilingualTranslator()
self.audio_generator = AudioGenerator()
logger.info("NewsAnalyzer initialized successfully")
async def analyze_news_async(self, config: Dict[str, Any], progress_callback=None) -> Dict[str, Any]:
"""Async version of analyze_news"""
return self.analyze_news(config, progress_callback)
def analyze_news(self, config: Dict[str, Any], progress_callback=None) -> Dict[str, Any]:
"""Main analysis pipeline"""
start_time = datetime.now()
try:
query = config['query']
num_articles = config.get('num_articles', 20)
languages = config.get('languages', ['English'])
include_audio = config.get('include_audio', True)
sentiment_models = config.get('sentiment_models', ['VADER', 'Loughran-McDonald', 'FinBERT'])
logger.info(f"Starting analysis for query: {query}")
if progress_callback:
progress_callback(10, "Scraping articles...")
# Step 1: Scrape articles
articles = self.scraper.scrape_news(query, num_articles)
logger.info(f"Scraped {len(articles)} articles")
if not articles:
raise ValueError("No articles found for the given query")
if progress_callback:
progress_callback(30, "Analyzing sentiment...")
# Step 2: Sentiment analysis
for article in articles:
article['sentiment'] = self.sentiment_analyzer.analyze_sentiment(
article['content'],
models=sentiment_models
)
if progress_callback:
progress_callback(50, "Extracting keywords...")
# Step 3: Keyword extraction
all_text = ' '.join([article['content'] for article in articles])
keywords = self.keyword_extractor.extract_keywords(all_text)
if progress_callback:
progress_callback(60, "Generating summaries...")
# Step 4: Summarization
for article in articles:
article['summary'] = self.summarizer.summarize(article['content'])
# Multilingual summaries
if len(languages) > 1:
article['summaries'] = {}
for lang in languages:
if lang != 'English':
article['summaries'][lang] = self.translator.translate(
article['summary'],
target_lang=lang
)
else:
article['summaries'][lang] = article['summary']
if progress_callback:
progress_callback(80, "Generating audio...")
# Step 5: Audio generation
audio_files = {}
if include_audio and languages:
# Create overall summary for audio
overall_summary = self.create_overall_summary(articles, keywords)
for lang in languages:
if lang in ['English', 'Hindi', 'Tamil']:
try:
if lang != 'English':
summary_text = self.translator.translate(overall_summary, target_lang=lang)
else:
summary_text = overall_summary
audio_file = self.audio_generator.generate_audio(
summary_text,
language=lang,
output_file=f"summary_{lang.lower()}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
)
audio_files[lang] = audio_file
except Exception as e:
logger.error(f"Error generating audio for {lang}: {str(e)}")
if progress_callback:
progress_callback(90, "Finalizing results...")
# Step 6: Calculate summary statistics
sentiments = [article['sentiment']['compound'] for article in articles]
average_sentiment = sum(sentiments) / len(sentiments) if sentiments else 0.0
sentiment_distribution = {
'Positive': sum(1 for s in sentiments if s > 0.1),
'Negative': sum(1 for s in sentiments if s < -0.1),
'Neutral': sum(1 for s in sentiments if -0.1 <= s <= 0.1)
}
# Step 7: Prepare results
processing_time = (datetime.now() - start_time).total_seconds()
results = {
'query': query,
'total_articles': len(articles),
'processing_time': processing_time,
'average_sentiment': average_sentiment,
'sentiment_distribution': sentiment_distribution,
'articles': articles,
'keywords': keywords,
'languages': languages,
'audio_files': audio_files,
'summary': {
'average_sentiment': average_sentiment,
'total_articles': len(articles),
'sources': len(set([article['source'] for article in articles])),
'date_range': self.get_date_range(articles)
}
}
if progress_callback:
progress_callback(100, "Analysis complete!")
logger.info(f"Analysis completed successfully in {processing_time:.2f} seconds")
return results
except Exception as e:
logger.error(f"Error in analysis pipeline: {str(e)}")
raise e
def create_overall_summary(self, articles: List[Dict], keywords: List[Dict]) -> str:
"""Create an overall summary for audio generation"""
try:
# Get top keywords
top_keywords = [kw['keyword'] for kw in keywords[:10]]
# Calculate sentiment distribution
positive_count = sum(1 for article in articles if article['sentiment']['compound'] > 0.1)
negative_count = sum(1 for article in articles if article['sentiment']['compound'] < -0.1)
neutral_count = len(articles) - positive_count - negative_count
# Create summary text
summary = f"Analysis of {len(articles)} articles reveals "
if positive_count > negative_count:
summary += f"predominantly positive sentiment with {positive_count} positive, {negative_count} negative, and {neutral_count} neutral articles. "
elif negative_count > positive_count:
summary += f"predominantly negative sentiment with {negative_count} negative, {positive_count} positive, and {neutral_count} neutral articles. "
else:
summary += f"mixed sentiment with balanced coverage. "
if top_keywords:
summary += f"Key topics include: {', '.join(top_keywords[:5])}. "
# Add top stories
top_positive = sorted(articles, key=lambda x: x['sentiment']['compound'], reverse=True)[:2]
top_negative = sorted(articles, key=lambda x: x['sentiment']['compound'])[:2]
if top_positive[0]['sentiment']['compound'] > 0.1:
summary += f"Most positive coverage: {top_positive[0]['title'][:100]}. "
if top_negative[0]['sentiment']['compound'] < -0.1:
summary += f"Most concerning coverage: {top_negative[0]['title'][:100]}. "
return summary
except Exception as e:
logger.error(f"Error creating overall summary: {str(e)}")
return f"Analysis of {len(articles)} articles completed successfully."
def get_date_range(self, articles: List[Dict]) -> Dict[str, str]:
"""Get the date range of articles"""
try:
dates = [article['date'] for article in articles if 'date' in article and article['date']]
if dates:
dates = [d for d in dates if d is not None]
if dates:
min_date = min(dates)
max_date = max(dates)
return {
'start': str(min_date),
'end': str(max_date)
}
return {'start': 'Unknown', 'end': 'Unknown'}
except Exception as e:
logger.error(f"Error getting date range: {str(e)}")
return {'start': 'Unknown', 'end': 'Unknown'}
# Initialize the analyzer
analyzer = NewsAnalyzer()
# FastAPI endpoints
@app.get("/", response_model=Dict[str, str])
async def root():
"""API root endpoint"""
return {
"message": "Global Business News Intelligence API",
"version": "1.0.0",
"docs": "/docs"
}
@app.get("/health", response_model=Dict[str, str])
async def health_check():
"""Health check endpoint"""
return {"status": "healthy", "timestamp": datetime.now().isoformat()}
@app.get("/api/analyze", response_model=AnalysisResponse)
async def analyze_news_endpoint(
query: str = Query(..., description="Company name, ticker, or keyword to analyze"),
num_articles: int = Query(20, description="Number of articles to analyze (5-50)", ge=5, le=50),
languages: List[str] = Query(["English"], description="Languages for summaries"),
include_audio: bool = Query(True, description="Generate audio summaries"),
sentiment_models: List[str] = Query(["VADER", "Loughran-McDonald", "FinBERT"], description="Sentiment models to use")
):
"""Main analysis endpoint"""
try:
config = {
'query': query,
'num_articles': num_articles,
'languages': languages,
'include_audio': include_audio,
'sentiment_models': sentiment_models
}
results = await analyzer.analyze_news_async(config)
return AnalysisResponse(**results)
except Exception as e:
logger.error(f"Error in analyze endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/analyze", response_model=AnalysisResponse)
async def analyze_news_post(request: AnalysisRequest):
"""POST version of analysis endpoint"""
try:
config = request.dict()
results = await analyzer.analyze_news_async(config)
return AnalysisResponse(**results)
except Exception as e:
logger.error(f"Error in analyze POST endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/sources", response_model=List[str])
async def get_available_sources():
"""Get list of available news sources"""
return analyzer.scraper.get_available_sources()
@app.get("/api/models", response_model=Dict[str, List[str]])
async def get_available_models():
"""Get list of available models"""
return {
"sentiment_models": ["VADER", "Loughran-McDonald", "FinBERT"],
"summarization_models": ["distilbart-cnn-12-6"],
"translation_models": ["Helsinki-NLP/opus-mt-en-hi", "Helsinki-NLP/opus-mt-en-fi"],
"audio_languages": ["English", "Hindi", "Tamil"]
}
@app.get("/api/keywords/{query}", response_model=List[Dict[str, Any]])
async def extract_keywords_endpoint(
query: str,
num_keywords: int = Query(20, description="Number of keywords to extract", ge=5, le=50)
):
"""Extract keywords from a query or text"""
try:
# For demo purposes, we'll scrape a few articles and extract keywords
articles = analyzer.scraper.scrape_news(query, 5)
if not articles:
raise HTTPException(status_code=404, detail="No articles found for query")
all_text = ' '.join([article['content'] for article in articles])
keywords = analyzer.keyword_extractor.extract_keywords(all_text, num_keywords=num_keywords)
return keywords
except Exception as e:
logger.error(f"Error in keywords endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000) |