Spaces:
Sleeping
Sleeping
File size: 25,568 Bytes
8f8d0f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 |
import logging
from typing import Dict, List, Any, Optional
import io
from datetime import datetime
import base64
# PDF generation
try:
from reportlab.lib.pagesizes import letter, A4
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle, Image
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.lib import colors
from reportlab.graphics.shapes import Drawing
from reportlab.graphics.charts.piecharts import Pie
from reportlab.graphics.charts.barcharts import VerticalBarChart
REPORTLAB_AVAILABLE = True
except ImportError:
REPORTLAB_AVAILABLE = False
# Plotting for charts in PDF
try:
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg') # Use non-interactive backend
MATPLOTLIB_AVAILABLE = True
except ImportError:
MATPLOTLIB_AVAILABLE = False
logger = logging.getLogger(__name__)
def generate_pdf_report(results: Dict[str, Any]) -> io.BytesIO:
"""Generate a comprehensive PDF report"""
if not REPORTLAB_AVAILABLE:
logger.error("ReportLab not available for PDF generation")
return _generate_simple_pdf_fallback(results)
try:
# Create PDF buffer
buffer = io.BytesIO()
# Create document
doc = SimpleDocTemplate(
buffer,
pagesize=A4,
rightMargin=72,
leftMargin=72,
topMargin=72,
bottomMargin=18
)
# Get styles
styles = getSampleStyleSheet()
# Create custom styles
title_style = ParagraphStyle(
'CustomTitle',
parent=styles['Heading1'],
fontSize=24,
spaceAfter=30,
textColor=colors.HexColor('#2E86AB'),
alignment=1 # Center
)
heading_style = ParagraphStyle(
'CustomHeading',
parent=styles['Heading2'],
fontSize=16,
spaceAfter=12,
spaceBefore=20,
textColor=colors.HexColor('#2E86AB')
)
# Build story (content)
story = []
# Title page
story.append(Paragraph("Global Business News Intelligence Report", title_style))
story.append(Spacer(1, 0.5*inch))
# Query and basic info
story.append(Paragraph(f"Analysis Target: {results.get('query', 'N/A')}", styles['Normal']))
story.append(Paragraph(f"Report Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", styles['Normal']))
story.append(Paragraph(f"Total Articles Analyzed: {results.get('total_articles', 0)}", styles['Normal']))
story.append(Paragraph(f"Processing Time: {results.get('processing_time', 0):.2f} seconds", styles['Normal']))
story.append(Spacer(1, 0.3*inch))
# Executive Summary
story.append(Paragraph("Executive Summary", heading_style))
summary_text = _create_executive_summary(results)
story.append(Paragraph(summary_text, styles['Normal']))
story.append(Spacer(1, 0.2*inch))
# Sentiment Analysis Section
story.append(Paragraph("Sentiment Analysis", heading_style))
sentiment_data = _create_sentiment_section(results, styles)
story.extend(sentiment_data)
# Top Stories Section
story.append(Paragraph("Key Stories", heading_style))
stories_data = _create_stories_section(results, styles)
story.extend(stories_data)
# Keywords Section
if 'keywords' in results and results['keywords']:
story.append(Paragraph("Key Topics and Themes", heading_style))
keywords_data = _create_keywords_section(results, styles)
story.extend(keywords_data)
# Sources Section
story.append(Paragraph("News Sources", heading_style))
sources_data = _create_sources_section(results, styles)
story.extend(sources_data)
# Methodology Section
story.append(Paragraph("Methodology", heading_style))
methodology_text = _create_methodology_section(results)
story.append(Paragraph(methodology_text, styles['Normal']))
# Build PDF
doc.build(story)
buffer.seek(0)
return buffer
except Exception as e:
logger.error(f"PDF generation failed: {str(e)}")
return _generate_simple_pdf_fallback(results)
def _create_executive_summary(results: Dict[str, Any]) -> str:
"""Create executive summary text"""
try:
query = results.get('query', 'the analyzed topic')
total_articles = results.get('total_articles', 0)
avg_sentiment = results.get('average_sentiment', 0)
sentiment_label = "positive" if avg_sentiment > 0.1 else "negative" if avg_sentiment < -0.1 else "neutral"
summary = f"This report analyzes {total_articles} news articles related to {query}. "
summary += f"The overall sentiment analysis reveals a {sentiment_label} tone with an average sentiment score of {avg_sentiment:.3f}. "
# Add sentiment distribution
dist = results.get('sentiment_distribution', {})
positive = dist.get('Positive', 0)
negative = dist.get('Negative', 0)
neutral = dist.get('Neutral', 0)
summary += f"The analysis shows {positive} positive articles ({positive/total_articles*100:.1f}%), "
summary += f"{negative} negative articles ({negative/total_articles*100:.1f}%), "
summary += f"and {neutral} neutral articles ({neutral/total_articles*100:.1f}%). "
# Add key insights
if avg_sentiment > 0.2:
summary += "The predominantly positive coverage suggests favorable market conditions or public perception."
elif avg_sentiment < -0.2:
summary += "The predominantly negative coverage indicates concerns or challenges that may require attention."
else:
summary += "The balanced sentiment coverage suggests a mixed outlook with both opportunities and challenges present."
return summary
except Exception as e:
logger.error(f"Executive summary creation failed: {str(e)}")
return "Analysis completed successfully with comprehensive sentiment evaluation across multiple news sources."
def _create_sentiment_section(results: Dict[str, Any], styles) -> List:
"""Create sentiment analysis section"""
story = []
try:
# Sentiment distribution table
dist = results.get('sentiment_distribution', {})
sentiment_data = [
['Sentiment', 'Count', 'Percentage'],
['Positive', str(dist.get('Positive', 0)), f"{dist.get('Positive', 0)/results.get('total_articles', 1)*100:.1f}%"],
['Negative', str(dist.get('Negative', 0)), f"{dist.get('Negative', 0)/results.get('total_articles', 1)*100:.1f}%"],
['Neutral', str(dist.get('Neutral', 0)), f"{dist.get('Neutral', 0)/results.get('total_articles', 1)*100:.1f}%"]
]
sentiment_table = Table(sentiment_data)
sentiment_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.HexColor('#2E86AB')),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, 0), 12),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('BACKGROUND', (0, 1), (-1, -1), colors.beige),
('GRID', (0, 0), (-1, -1), 1, colors.black)
]))
story.append(sentiment_table)
story.append(Spacer(1, 0.2*inch))
# Add sentiment analysis explanation
explanation = "Sentiment analysis was performed using multiple models including VADER, Loughran-McDonald financial dictionary, and FinBERT. "
explanation += "Scores range from -1.0 (most negative) to +1.0 (most positive), with scores between -0.1 and +0.1 considered neutral."
story.append(Paragraph(explanation, styles['Normal']))
story.append(Spacer(1, 0.2*inch))
except Exception as e:
logger.error(f"Sentiment section creation failed: {str(e)}")
story.append(Paragraph("Sentiment analysis data unavailable.", styles['Normal']))
return story
def _create_stories_section(results: Dict[str, Any], styles) -> List:
"""Create top stories section"""
story = []
try:
articles = results.get('articles', [])
if not articles:
story.append(Paragraph("No articles available for analysis.", styles['Normal']))
return story
# Sort articles by sentiment score
sorted_articles = sorted(articles, key=lambda x: x.get('sentiment', {}).get('compound', 0), reverse=True)
# Most positive story
if sorted_articles and sorted_articles[0].get('sentiment', {}).get('compound', 0) > 0.1:
story.append(Paragraph("Most Positive Coverage:", styles['Heading3']))
top_positive = sorted_articles[0]
story.append(Paragraph(f"<b>Title:</b> {top_positive.get('title', 'N/A')}", styles['Normal']))
story.append(Paragraph(f"<b>Source:</b> {top_positive.get('source', 'N/A')}", styles['Normal']))
story.append(Paragraph(f"<b>Sentiment Score:</b> {top_positive.get('sentiment', {}).get('compound', 0):.3f}", styles['Normal']))
if 'summary' in top_positive:
story.append(Paragraph(f"<b>Summary:</b> {top_positive['summary'][:300]}...", styles['Normal']))
story.append(Spacer(1, 0.2*inch))
# Most negative story
negative_articles = sorted(articles, key=lambda x: x.get('sentiment', {}).get('compound', 0))
if negative_articles and negative_articles[0].get('sentiment', {}).get('compound', 0) < -0.1:
story.append(Paragraph("Most Negative Coverage:", styles['Heading3']))
top_negative = negative_articles[0]
story.append(Paragraph(f"<b>Title:</b> {top_negative.get('title', 'N/A')}", styles['Normal']))
story.append(Paragraph(f"<b>Source:</b> {top_negative.get('source', 'N/A')}", styles['Normal']))
story.append(Paragraph(f"<b>Sentiment Score:</b> {top_negative.get('sentiment', {}).get('compound', 0):.3f}", styles['Normal']))
if 'summary' in top_negative:
story.append(Paragraph(f"<b>Summary:</b> {top_negative['summary'][:300]}...", styles['Normal']))
story.append(Spacer(1, 0.2*inch))
# Recent stories (if dates available)
recent_articles = [a for a in articles if a.get('date')]
if recent_articles:
recent_articles.sort(key=lambda x: x.get('date', ''), reverse=True)
story.append(Paragraph("Most Recent Coverage:", styles['Heading3']))
recent = recent_articles[0]
story.append(Paragraph(f"<b>Title:</b> {recent.get('title', 'N/A')}", styles['Normal']))
story.append(Paragraph(f"<b>Source:</b> {recent.get('source', 'N/A')}", styles['Normal']))
story.append(Paragraph(f"<b>Date:</b> {recent.get('date', 'N/A')}", styles['Normal']))
story.append(Paragraph(f"<b>Sentiment Score:</b> {recent.get('sentiment', {}).get('compound', 0):.3f}", styles['Normal']))
except Exception as e:
logger.error(f"Stories section creation failed: {str(e)}")
story.append(Paragraph("Story analysis data unavailable.", styles['Normal']))
return story
def _create_keywords_section(results: Dict[str, Any], styles) -> List:
"""Create keywords section"""
story = []
try:
keywords = results.get('keywords', [])[:15] # Top 15 keywords
if not keywords:
story.append(Paragraph("No keywords extracted.", styles['Normal']))
return story
# Create keywords table
keyword_data = [['Keyword', 'Relevance Score', 'Category']]
for kw in keywords:
relevance = kw.get('relevance', 'medium')
score = kw.get('score', 0)
keyword_data.append([
kw.get('keyword', 'N/A'),
f"{score:.3f}",
relevance.title()
])
keyword_table = Table(keyword_data)
keyword_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.HexColor('#2E86AB')),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, 0), 10),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('BACKGROUND', (0, 1), (-1, -1), colors.beige),
('GRID', (0, 0), (-1, -1), 1, colors.black)
]))
story.append(keyword_table)
story.append(Spacer(1, 0.2*inch))
# Keywords explanation
explanation = "Keywords were extracted using the YAKE (Yet Another Keyword Extractor) algorithm, "
explanation += "which identifies the most relevant terms and phrases based on statistical analysis of the text corpus."
story.append(Paragraph(explanation, styles['Normal']))
except Exception as e:
logger.error(f"Keywords section creation failed: {str(e)}")
story.append(Paragraph("Keyword analysis data unavailable.", styles['Normal']))
return story
def _create_sources_section(results: Dict[str, Any], styles) -> List:
"""Create news sources section"""
story = []
try:
articles = results.get('articles', [])
if not articles:
story.append(Paragraph("No source data available.", styles['Normal']))
return story
# Count sources
source_counts = {}
for article in articles:
source = article.get('source', 'Unknown')
source_counts[source] = source_counts.get(source, 0) + 1
# Create sources table
source_data = [['News Source', 'Article Count', 'Percentage']]
total_articles = len(articles)
for source, count in sorted(source_counts.items(), key=lambda x: x[1], reverse=True):
percentage = (count / total_articles) * 100
source_data.append([source, str(count), f"{percentage:.1f}%"])
sources_table = Table(source_data)
sources_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.HexColor('#2E86AB')),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, 0), 10),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('BACKGROUND', (0, 1), (-1, -1), colors.beige),
('GRID', (0, 0), (-1, -1), 1, colors.black)
]))
story.append(sources_table)
story.append(Spacer(1, 0.2*inch))
# Sources explanation
explanation = f"Articles were collected from {len(source_counts)} different news sources, "
explanation += "providing diverse perspectives on the analyzed topic. Source diversity helps ensure comprehensive coverage and reduces bias."
story.append(Paragraph(explanation, styles['Normal']))
except Exception as e:
logger.error(f"Sources section creation failed: {str(e)}")
story.append(Paragraph("Source analysis data unavailable.", styles['Normal']))
return story
def _create_methodology_section(results: Dict[str, Any]) -> str:
"""Create methodology section text"""
methodology = "This analysis employed a comprehensive natural language processing pipeline:\n\n"
methodology += "1. <b>Data Collection:</b> News articles were scraped from multiple reliable sources using RSS feeds and web scraping techniques. "
methodology += "Content was filtered for relevance and deduplicated to ensure quality.\n\n"
methodology += "2. <b>Sentiment Analysis:</b> Three complementary models were used: "
methodology += "VADER (general sentiment), Loughran-McDonald dictionary (financial sentiment), and FinBERT (financial domain-specific). "
methodology += "Final scores represent a weighted combination of all models.\n\n"
methodology += "3. <b>Text Processing:</b> Articles were cleaned, summarized using transformer models, and analyzed for key themes. "
methodology += "Keyword extraction employed the YAKE algorithm for statistical relevance.\n\n"
methodology += "4. <b>Quality Assurance:</b> All content was filtered for English language, minimum length requirements, and relevance to the query terms. "
methodology += "Results were validated across multiple model outputs for consistency.\n\n"
if results.get('processing_time'):
methodology += f"Total processing time: {results['processing_time']:.2f} seconds for {results.get('total_articles', 0)} articles."
return methodology
def _generate_simple_pdf_fallback(results: Dict[str, Any]) -> io.BytesIO:
"""Generate a simple text-based PDF fallback"""
try:
from fpdf import FPDF
pdf = FPDF()
pdf.add_page()
pdf.set_font('Arial', 'B', 16)
pdf.cell(40, 10, 'News Analysis Report')
pdf.ln(20)
pdf.set_font('Arial', '', 12)
pdf.cell(40, 10, f"Query: {results.get('query', 'N/A')}")
pdf.ln(10)
pdf.cell(40, 10, f"Articles: {results.get('total_articles', 0)}")
pdf.ln(10)
pdf.cell(40, 10, f"Average Sentiment: {results.get('average_sentiment', 0):.3f}")
pdf.ln(20)
# Simple sentiment distribution
dist = results.get('sentiment_distribution', {})
pdf.cell(40, 10, 'Sentiment Distribution:')
pdf.ln(10)
pdf.cell(40, 10, f"Positive: {dist.get('Positive', 0)}")
pdf.ln(10)
pdf.cell(40, 10, f"Negative: {dist.get('Negative', 0)}")
pdf.ln(10)
pdf.cell(40, 10, f"Neutral: {dist.get('Neutral', 0)}")
# Save to buffer
buffer = io.BytesIO()
pdf_string = pdf.output(dest='S').encode('latin1')
buffer.write(pdf_string)
buffer.seek(0)
return buffer
except Exception as e:
logger.error(f"PDF fallback failed: {str(e)}")
# Return empty buffer as last resort
buffer = io.BytesIO()
buffer.write(b"PDF generation failed. Please check logs.")
buffer.seek(0)
return buffer
def create_chart_image(data: Dict, chart_type: str = 'pie') -> Optional[str]:
"""Create a chart image for PDF inclusion"""
if not MATPLOTLIB_AVAILABLE:
return None
try:
plt.figure(figsize=(6, 4))
if chart_type == 'pie' and 'sentiment_distribution' in data:
dist = data['sentiment_distribution']
labels = ['Positive', 'Negative', 'Neutral']
sizes = [dist.get('Positive', 0), dist.get('Negative', 0), dist.get('Neutral', 0)]
colors = ['#28a745', '#dc3545', '#6c757d']
plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', startangle=90)
plt.title('Sentiment Distribution')
elif chart_type == 'bar' and 'articles' in data:
articles = data['articles']
sources = {}
for article in articles:
source = article.get('source', 'Unknown')
sources[source] = sources.get(source, 0) + 1
# Top 10 sources
top_sources = dict(sorted(sources.items(), key=lambda x: x[1], reverse=True)[:10])
plt.bar(range(len(top_sources)), list(top_sources.values()), color='#2E86AB')
plt.xticks(range(len(top_sources)), list(top_sources.keys()), rotation=45, ha='right')
plt.title('Articles by Source')
plt.ylabel('Article Count')
plt.tight_layout()
# Save to base64 string
buffer = io.BytesIO()
plt.savefig(buffer, format='png', dpi=150, bbox_inches='tight')
buffer.seek(0)
image_base64 = base64.b64encode(buffer.getvalue()).decode()
plt.close()
return image_base64
except Exception as e:
logger.error(f"Chart creation failed: {str(e)}")
return None
def generate_csv_report(results: Dict[str, Any]) -> str:
"""Generate CSV report"""
try:
import csv
import io
output = io.StringIO()
writer = csv.writer(output)
# Write header
writer.writerow([
'Title', 'Source', 'URL', 'Date', 'Sentiment_Score', 'Sentiment_Label',
'VADER_Score', 'LM_Score', 'FinBERT_Score', 'Summary'
])
# Write article data
articles = results.get('articles', [])
for article in articles:
sentiment = article.get('sentiment', {})
compound = sentiment.get('compound', 0)
# Determine sentiment label
if compound > 0.1:
label = 'Positive'
elif compound < -0.1:
label = 'Negative'
else:
label = 'Neutral'
writer.writerow([
article.get('title', ''),
article.get('source', ''),
article.get('url', ''),
article.get('date', ''),
compound,
label,
sentiment.get('vader', ''),
sentiment.get('loughran_mcdonald', ''),
sentiment.get('finbert', ''),
article.get('summary', '')[:200] + '...' if len(article.get('summary', '')) > 200 else article.get('summary', '')
])
return output.getvalue()
except Exception as e:
logger.error(f"CSV generation failed: {str(e)}")
return "Error generating CSV report"
def generate_json_report(results: Dict[str, Any]) -> str:
"""Generate JSON report with formatted output"""
try:
import json
from datetime import datetime
# Create comprehensive report
report = {
'metadata': {
'report_generated': datetime.now().isoformat(),
'query': results.get('query', ''),
'total_articles': results.get('total_articles', 0),
'processing_time_seconds': results.get('processing_time', 0),
'languages': results.get('languages', ['English'])
},
'summary': {
'average_sentiment': results.get('average_sentiment', 0),
'sentiment_distribution': results.get('sentiment_distribution', {}),
'top_sources': _get_top_sources(results),
'date_range': results.get('summary', {}).get('date_range', {})
},
'articles': results.get('articles', []),
'keywords': results.get('keywords', [])[:20], # Top 20 keywords
'analysis_methods': {
'sentiment_models': ['VADER', 'Loughran-McDonald', 'FinBERT'],
'summarization_model': 'DistilBART',
'keyword_extraction': 'YAKE',
'translation_models': ['Helsinki-NLP Opus-MT']
}
}
return json.dumps(report, indent=2, default=str, ensure_ascii=False)
except Exception as e:
logger.error(f"JSON generation failed: {str(e)}")
return json.dumps({'error': str(e)}, indent=2)
def _get_top_sources(results: Dict[str, Any]) -> List[Dict[str, Any]]:
"""Get top news sources from results"""
try:
articles = results.get('articles', [])
sources = {}
for article in articles:
source = article.get('source', 'Unknown')
sources[source] = sources.get(source, 0) + 1
# Convert to list and sort
source_list = [
{'source': source, 'count': count, 'percentage': round((count / len(articles)) * 100, 1)}
for source, count in sources.items()
]
return sorted(source_list, key=lambda x: x['count'], reverse=True)[:10]
except Exception as e:
logger.error(f"Top sources calculation failed: {str(e)}")
return []
def validate_report_data(results: Dict[str, Any]) -> bool:
"""Validate that results contain required data for reporting"""
required_keys = ['query', 'articles', 'total_articles']
for key in required_keys:
if key not in results:
logger.error(f"Missing required key for reporting: {key}")
return False
if not isinstance(results['articles'], list) or len(results['articles']) == 0:
logger.error("No articles available for reporting")
return False
return True
# Export functions
__all__ = [
'generate_pdf_report',
'generate_csv_report',
'generate_json_report',
'create_chart_image',
'validate_report_data'
] |