File size: 13,684 Bytes
c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 8f8d0f6 c844811 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
# api.py
"""
FastAPI backend for the News Sentiment Analyzer.
- Orchestrates scraping, NLP, summarization, translation, and TTS.
- Safe for Hugging Face Spaces (CPU-only, lazy model loading, CORS open).
"""
from __future__ import annotations
import os
import json
import logging
from datetime import datetime
from typing import Any, Dict, List, Optional
from fastapi import FastAPI, Query
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
# Local modules
from utils import (
setup_logging,
load_config,
calculate_processing_stats,
calculate_sentiment_distribution,
)
from scraper import NewsletterScraper
from summarizer import TextSummarizer, extract_key_sentences
from translator import MultilingualTranslator
from tts import AudioGenerator
from nlp import SentimentAnalyzer, KeywordExtractor, TextProcessor # provided in your repo
# ------------------------------------------------------------------------------
# Init
# ------------------------------------------------------------------------------
setup_logging()
logger = logging.getLogger("api")
app = FastAPI(
title="News Intelligence API",
version="1.0.0",
description="Backend for News Sentiment Analyzer (Hugging Face deploy-ready)",
)
# Hugging Face Spaces often runs UI + API from same origin,
# but open CORS to keep it simple for local/dev and Space builds.
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
# ------------------------------------------------------------------------------
# Pydantic models
# ------------------------------------------------------------------------------
class AnalyzeRequest(BaseModel):
query: str = Field(..., description="Company / stock / keyword to analyze")
num_articles: int = Field(20, ge=5, le=50, description="Number of articles (5-50)")
languages: List[str] = Field(default_factory=lambda: ["English"])
include_audio: bool = True
sentiment_models: List[str] = Field(
default_factory=lambda: ["VADER", "Loughran-McDonald", "FinBERT"]
)
class AnalyzeResponse(BaseModel):
query: str
summary: Dict[str, Any]
articles: List[Dict[str, Any]]
keywords: List[Dict[str, Any]]
audio_files: Optional[Dict[str, Optional[str]]] = None
languages: List[str]
config: Dict[str, Any]
# ------------------------------------------------------------------------------
# Core Orchestrator
# ------------------------------------------------------------------------------
class NewsAnalyzer:
"""
All heavy components are created lazily to avoid high cold-start memory usage
and to play nice with Hugging Face CPU-only Spaces.
"""
def __init__(self) -> None:
self._cfg = load_config()
self._scraper: Optional[NewsletterScraper] = None
self._summarizer: Optional[TextSummarizer] = None
self._translator: Optional[MultilingualTranslator] = None
self._audio: Optional[AudioGenerator] = None
self._sentiment: Optional[SentimentAnalyzer] = None
self._keywords: Optional[KeywordExtractor] = None
self._textproc: Optional[TextProcessor] = None
logger.info("NewsAnalyzer initialized with lazy components.")
# --- Lazy props -----------------------------------------------------------
@property
def scraper(self) -> NewsletterScraper:
if self._scraper is None:
self._scraper = NewsletterScraper()
return self._scraper
@property
def summarizer(self) -> TextSummarizer:
if self._summarizer is None:
self._summarizer = TextSummarizer()
return self._summarizer
@property
def translator(self) -> MultilingualTranslator:
if self._translator is None:
self._translator = MultilingualTranslator()
return self._translator
@property
def audio(self) -> AudioGenerator:
if self._audio is None:
self._audio = AudioGenerator()
return self._audio
@property
def sentiment(self) -> SentimentAnalyzer:
if self._sentiment is None:
self._sentiment = SentimentAnalyzer()
return self._sentiment
@property
def keyword_extractor(self) -> KeywordExtractor:
if self._keywords is None:
self._keywords = KeywordExtractor()
return self._keywords
@property
def textproc(self) -> TextProcessor:
if self._textproc is None:
self._textproc = TextProcessor()
return self._textproc
# --- Pipeline -------------------------------------------------------------
def analyze_news(
self,
config: Dict[str, Any],
progress_callback=None,
) -> Dict[str, Any]:
"""
Synchronous pipeline used by Streamlit UI.
(FastAPI endpoint wraps it synchronously as well.)
"""
start_time = datetime.now()
query: str = config["query"].strip()
num_articles: int = int(config.get("num_articles", 20))
languages: List[str] = config.get("languages", ["English"]) or ["English"]
include_audio: bool = bool(config.get("include_audio", True))
sentiment_models: List[str] = config.get(
"sentiment_models", ["VADER", "Loughran-McDonald", "FinBERT"]
)
if progress_callback:
progress_callback(5, "Initializing pipeline...")
# --- Step 1: Scrape ---------------------------------------------------
if progress_callback:
progress_callback(10, "Scraping articles...")
articles = self.scraper.scrape_news(query, max_articles=num_articles)
if not articles:
# Return graceful empty response rather than raising
return {
"query": query,
"summary": {
"average_sentiment": 0.0,
"distribution": {"positive": 0, "negative": 0, "neutral": 0, "total": 0},
"processing": calculate_processing_stats(start_time, 0),
},
"articles": [],
"keywords": [],
"audio_files": {},
"languages": languages,
"config": config,
}
# Ensure 'content' is present
for a in articles:
if not a.get("content"):
a["content"] = a.get("summary") or a.get("title") or ""
# --- Step 2: Sentiment ------------------------------------------------
if progress_callback:
progress_callback(30, "Analyzing sentiment...")
for a in articles:
try:
a["sentiment"] = self.sentiment.analyze_sentiment(
a["content"], models=sentiment_models
)
except Exception as e:
logger.exception(f"Sentiment failed for '{a.get('title','')[:60]}': {e}")
a["sentiment"] = {"compound": 0.0}
# --- Step 3: Summaries ------------------------------------------------
if progress_callback:
progress_callback(50, "Generating summaries...")
for a in articles:
try:
a["summary"] = self.summarizer.summarize(a["content"])
except Exception as e:
logger.exception(f"Summarization failed: {e}")
a["summary"] = self.textproc.clean_text(a["content"])[:300] + "..."
# --- Step 4: Multilingual summaries ----------------------------------
if len(languages) > 1:
if progress_callback:
progress_callback(60, "Translating summaries...")
for a in articles:
a["summaries"] = {}
for lang in languages:
try:
if lang == "English":
a["summaries"][lang] = a["summary"]
else:
a["summaries"][lang] = self.translator.translate(
a["summary"], target_lang=lang, source_lang="English"
)
except Exception as e:
logger.exception(f"Translation failed ({lang}): {e}")
a["summaries"][lang] = a["summary"]
# --- Step 5: Keywords (YAKE) -----------------------------------------
if progress_callback:
progress_callback(70, "Extracting keywords...")
joined = " ".join(a.get("content", "") for a in articles)
keywords = self.keyword_extractor.extract_keywords(joined) if joined else []
# --- Step 6: Optional Audio ------------------------------------------
audio_files: Dict[str, Optional[str]] = {}
if include_audio and languages:
if progress_callback:
progress_callback(80, "Creating audio summaries...")
overall_summary = self._overall_summary_text(articles, keywords)
for lang in languages:
try:
summary_text = (
self.translator.translate(overall_summary, target_lang=lang)
if lang != "English"
else overall_summary
)
audio_files[lang] = self.audio.generate_audio(
summary_text,
language=lang,
output_file=f"summary_{lang.lower()}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3",
)
except Exception as e:
logger.exception(f"Audio failed ({lang}): {e}")
audio_files[lang] = None
# --- Summary stats ----------------------------------------------------
if progress_callback:
progress_callback(90, "Finalizing results...")
dist = calculate_sentiment_distribution(articles)
processing = calculate_processing_stats(start_time, len(articles))
results: Dict[str, Any] = {
"query": query,
"summary": {
"average_sentiment": dist.get("average_sentiment", 0.0),
"distribution": dist,
"processing": processing,
"top_sentences": extract_key_sentences(joined, num_sentences=3),
},
"articles": articles,
"keywords": keywords,
"audio_files": audio_files,
"languages": languages,
"config": config,
}
if progress_callback:
progress_callback(100, "Done.")
return results
# Helpers -----------------------------------------------------------------
def _overall_summary_text(self, articles: List[Dict[str, Any]], keywords: List[Dict[str, Any]]) -> str:
"""Create a concise, human-friendly overall summary to read out in audio."""
pos = sum(1 for a in articles if a.get("sentiment", {}).get("compound", 0) > 0.1)
neg = sum(1 for a in articles if a.get("sentiment", {}).get("compound", 0) < -0.1)
neu = len(articles) - pos - neg
top_kw = ", ".join(kw["keyword"] for kw in keywords[:8]) if keywords else ""
latest_title = ""
try:
latest = sorted(
[a for a in articles if a.get("date")],
key=lambda x: x.get("date"),
reverse=True,
)
if latest:
latest_title = latest[0].get("title", "")[:120]
except Exception:
pass
parts = [
f"News analysis summary for {len(articles)} articles.",
f"Overall sentiment: {pos} positive, {neg} negative, and {neu} neutral articles.",
]
if latest_title:
parts.append(f"Latest development: {latest_title}.")
if top_kw:
parts.append(f"Top themes include: {top_kw}.")
parts.append("This concludes the summary.")
return " ".join(parts)
# Single global analyzer (works fine for Spaces + Streamlit)
analyzer = NewsAnalyzer()
# ------------------------------------------------------------------------------
# Routes
# ------------------------------------------------------------------------------
@app.get("/health")
def health() -> Dict[str, Any]:
return {
"status": "ok",
"time": datetime.utcnow().isoformat(),
"config": load_config(),
}
@app.get("/api/analyze", response_model=AnalyzeResponse)
def analyze_get(
query: str = Query(..., description="Company / stock / keyword"),
num_articles: int = Query(20, ge=5, le=50),
languages: str = Query("English", description="Comma-separated languages"),
include_audio: bool = Query(True),
sentiment_models: str = Query("VADER,Loughran-McDonald,FinBERT"),
):
req = AnalyzeRequest(
query=query.strip(),
num_articles=num_articles,
languages=[x.strip() for x in languages.split(",") if x.strip()],
include_audio=include_audio,
sentiment_models=[x.strip() for x in sentiment_models.split(",") if x.strip()],
)
result = analyzer.analyze_news(req.dict())
return AnalyzeResponse(**result)
@app.post("/api/analyze", response_model=AnalyzeResponse)
def analyze_post(payload: AnalyzeRequest):
result = analyzer.analyze_news(payload.dict())
return AnalyzeResponse(**result)
# UVicorn hint (not used on Spaces; kept for local runs)
if __name__ == "__main__":
import uvicorn
host = os.getenv("FASTAPI_HOST", "0.0.0.0")
port = int(os.getenv("FASTAPI_PORT", "8000"))
uvicorn.run("api:app", host=host, port=port, reload=False)
|