File size: 24,732 Bytes
8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 8f8d0f6 25a13d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
import logging
from typing import Dict, List, Any, Optional, Tuple
import io
from datetime import datetime
import base64
logger = logging.getLogger(__name__)
# -------------------------------
# Optional PDF backends
# -------------------------------
try:
from reportlab.lib.pagesizes import A4
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.lib import colors
REPORTLAB_AVAILABLE = True
except ImportError:
REPORTLAB_AVAILABLE = False
try:
from fpdf import FPDF
FPDF_AVAILABLE = True
except ImportError:
FPDF_AVAILABLE = False
# Optional plotting for chart images (base64)
try:
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg')
MATPLOTLIB_AVAILABLE = True
except ImportError:
MATPLOTLIB_AVAILABLE = False
# -------------------------------
# Small helpers
# -------------------------------
def _safe_div(a: float, b: float) -> float:
try:
return (a / b) if b else 0.0
except Exception:
return 0.0
def _norm_dist_from_results(results: Dict[str, Any]) -> Tuple[int, Dict[str, int], float]:
"""
Normalize fields from both the legacy structure and the new API structure.
Returns:
total_articles,
counts dict {'Positive': int, 'Negative': int, 'Neutral': int},
average_sentiment (float)
"""
# Prefer the new API shape: results["summary"]["distribution"] etc.
articles = results.get("articles", []) or []
total = results.get("total_articles") or len(articles) # backfill if missing
avg = 0.0
if "summary" in results:
avg = results["summary"].get("average_sentiment", 0.0) or 0.0
dist = results["summary"].get("distribution", {}) or {}
pos = dist.get("positive") or dist.get("Positive") or 0
neg = dist.get("negative") or dist.get("Negative") or 0
neu = dist.get("neutral") or dist.get("Neutral") or 0
else:
# Legacy keys (if present)
avg = results.get("average_sentiment", 0.0) or 0.0
legacy = results.get("sentiment_distribution", {}) or {}
pos = legacy.get("Positive") or legacy.get("positive") or 0
neg = legacy.get("Negative") or legacy.get("negative") or 0
neu = legacy.get("Neutral") or legacy.get("neutral") or 0
# If counts are 0 but we have articles, compute from article sentiments
if (pos + neg + neu == 0) and articles:
for a in articles:
c = (a.get("sentiment") or {}).get("compound", 0.0)
if c > 0.1:
pos += 1
elif c < -0.1:
neg += 1
else:
neu += 1
return total, {"Positive": pos, "Negative": neg, "Neutral": neu}, float(avg)
def _get_processing_time(results: Dict[str, Any]) -> float:
# New structure: results["summary"]["processing"]["processing_time_seconds"]
try:
return float(results.get("summary", {}).get("processing", {}).get("processing_time_seconds", 0.0))
except Exception:
pass
# Legacy field
try:
return float(results.get("processing_time", 0.0))
except Exception:
return 0.0
# -------------------------------
# Public API
# -------------------------------
def generate_pdf_report(results: Dict[str, Any]) -> io.BytesIO:
"""
Generate a comprehensive PDF report.
Returns a BytesIO buffer so Streamlit can download directly.
"""
if REPORTLAB_AVAILABLE:
try:
return _generate_pdf_with_reportlab(results)
except Exception as e:
logger.exception(f"ReportLab PDF generation failed: {e}")
# Fallback
if FPDF_AVAILABLE:
return _generate_simple_pdf_fallback(results)
# Last resort: a tiny text buffer
buf = io.BytesIO()
buf.write(b"PDF generation is unavailable (ReportLab/FPDF not installed).")
buf.seek(0)
return buf
# -------------------------------
# ReportLab implementation
# -------------------------------
def _generate_pdf_with_reportlab(results: Dict[str, Any]) -> io.BytesIO:
buffer = io.BytesIO()
doc = SimpleDocTemplate(
buffer,
pagesize=A4,
rightMargin=72,
leftMargin=72,
topMargin=72,
bottomMargin=18,
)
styles = getSampleStyleSheet()
title_style = ParagraphStyle(
'CustomTitle',
parent=styles['Heading1'],
fontSize=22,
spaceAfter=24,
textColor=colors.HexColor('#2E86AB'),
alignment=1 # Center
)
heading_style = ParagraphStyle(
'CustomHeading',
parent=styles['Heading2'],
fontSize=14,
spaceAfter=10,
spaceBefore=18,
textColor=colors.HexColor('#2E86AB')
)
story: List[Any] = []
# Title
query = results.get('query', 'N/A')
story.append(Paragraph(f"Global Business News Intelligence Report", title_style))
story.append(Spacer(1, 0.35 * inch))
story.append(Paragraph(f"Analysis Target: {query}", styles['Normal']))
story.append(Paragraph(f"Report Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", styles['Normal']))
total, dist_counts, avg = _norm_dist_from_results(results)
proc_time = _get_processing_time(results)
story.append(Paragraph(f"Total Articles Analyzed: {total}", styles['Normal']))
story.append(Paragraph(f"Processing Time: {proc_time:.2f} seconds", styles['Normal']))
story.append(Spacer(1, 0.25 * inch))
# Executive Summary
story.append(Paragraph("Executive Summary", heading_style))
story.append(Paragraph(_create_executive_summary(query, total, avg, dist_counts), styles['Normal']))
story.append(Spacer(1, 0.2 * inch))
# Sentiment Analysis
story.append(Paragraph("Sentiment Analysis", heading_style))
story.extend(_create_sentiment_section(total, dist_counts, styles))
# Key Stories
story.append(Paragraph("Key Stories", heading_style))
story.extend(_create_stories_section(results, styles))
# Keywords
keywords = results.get('keywords') or []
if keywords:
story.append(Paragraph("Key Topics and Themes", heading_style))
story.extend(_create_keywords_section(keywords, styles))
# Sources
story.append(Paragraph("News Sources", heading_style))
story.extend(_create_sources_section(results, styles))
# Methodology
story.append(Paragraph("Methodology", heading_style))
story.append(Paragraph(_create_methodology_section(results, total, proc_time), styles['Normal']))
doc.build(story)
buffer.seek(0)
return buffer
def _create_executive_summary(query: str, total: int, avg_sentiment: float, dist_counts: Dict[str, int]) -> str:
try:
if total == 0:
return f"No articles were available to analyze for “{query}”."
label = "positive" if avg_sentiment > 0.1 else "negative" if avg_sentiment < -0.1 else "neutral"
pos = dist_counts.get("Positive", 0)
neg = dist_counts.get("Negative", 0)
neu = dist_counts.get("Neutral", 0)
pct_pos = _safe_div(pos, total) * 100.0
pct_neg = _safe_div(neg, total) * 100.0
pct_neu = _safe_div(neu, total) * 100.0
summary = (
f"This report analyzes {total} news articles related to “{query}”. "
f"The overall sentiment reveals a {label} tone with an average sentiment score of {avg_sentiment:.3f}. "
f"The analysis shows {pos} positive articles ({pct_pos:.1f}%), "
f"{neg} negative articles ({pct_neg:.1f}%), and {neu} neutral articles ({pct_neu:.1f}%). "
)
if avg_sentiment > 0.2:
summary += "Predominantly positive coverage suggests favorable market conditions or public perception."
elif avg_sentiment < -0.2:
summary += "Predominantly negative coverage indicates concerns or challenges that may require attention."
else:
summary += "Balanced coverage suggests a mixed outlook with both opportunities and challenges."
return summary
except Exception as e:
logger.exception(f"Executive summary creation failed: {e}")
return "Analysis completed successfully with comprehensive sentiment evaluation across multiple news sources."
def _create_sentiment_section(total: int, dist_counts: Dict[str, int], styles) -> List[Any]:
story: List[Any] = []
try:
pos = dist_counts.get("Positive", 0)
neg = dist_counts.get("Negative", 0)
neu = dist_counts.get("Neutral", 0)
data = [
['Sentiment', 'Count', 'Percentage'],
['Positive', str(pos), f"{_safe_div(pos, total) * 100:.1f}%"],
['Negative', str(neg), f"{_safe_div(neg, total) * 100:.1f}%"],
['Neutral', str(neu), f"{_safe_div(neu, total) * 100:.1f}%"],
]
table = Table(data)
table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.HexColor('#2E86AB')),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, 0), 12),
('BOTTOMPADDING', (0, 0), (-1, 0), 10),
('BACKGROUND', (0, 1), (-1, -1), colors.beige),
('GRID', (0, 0), (-1, -1), 1, colors.black),
]))
story.append(table)
story.append(Spacer(1, 0.2 * inch))
explanation = (
"Sentiment analysis was performed using multiple models including VADER, "
"Loughran–McDonald (financial), and FinBERT. Scores range from -1.0 (most negative) "
"to +1.0 (most positive), with -0.1 to +0.1 considered neutral."
)
story.append(Paragraph(explanation, styles['Normal']))
story.append(Spacer(1, 0.1 * inch))
except Exception as e:
logger.exception(f"Sentiment section creation failed: {e}")
story.append(Paragraph("Sentiment analysis data unavailable.", styles['Normal']))
return story
def _create_stories_section(results: Dict[str, Any], styles) -> List[Any]:
story: List[Any] = []
try:
articles = results.get('articles', []) or []
if not articles:
story.append(Paragraph("No articles available for analysis.", styles['Normal']))
return story
# Sort by compound sentiment
sorted_by_pos = sorted(articles, key=lambda x: (x.get('sentiment') or {}).get('compound', 0.0), reverse=True)
sorted_by_neg = sorted(articles, key=lambda x: (x.get('sentiment') or {}).get('compound', 0.0))
# Most positive
if sorted_by_pos and (sorted_by_pos[0].get('sentiment') or {}).get('compound', 0.0) > 0.1:
a = sorted_by_pos[0]
story.append(Paragraph("Most Positive Coverage:", styles['Heading3']))
story.append(Paragraph(f"<b>Title:</b> {a.get('title','N/A')}", styles['Normal']))
story.append(Paragraph(f"<b>Source:</b> {a.get('source','N/A')}", styles['Normal']))
story.append(Paragraph(f"<b>Sentiment Score:</b> {(a.get('sentiment') or {}).get('compound', 0.0):.3f}", styles['Normal']))
if a.get('summary'):
story.append(Paragraph(f"<b>Summary:</b> {a['summary'][:300]}{'...' if len(a['summary'])>300 else ''}", styles['Normal']))
story.append(Spacer(1, 0.15 * inch))
# Most negative
if sorted_by_neg and (sorted_by_neg[0].get('sentiment') or {}).get('compound', 0.0) < -0.1:
a = sorted_by_neg[0]
story.append(Paragraph("Most Negative Coverage:", styles['Heading3']))
story.append(Paragraph(f"<b>Title:</b> {a.get('title','N/A')}", styles['Normal']))
story.append(Paragraph(f"<b>Source:</b> {a.get('source','N/A')}", styles['Normal']))
story.append(Paragraph(f"<b>Sentiment Score:</b> {(a.get('sentiment') or {}).get('compound', 0.0):.3f}", styles['Normal']))
if a.get('summary'):
story.append(Paragraph(f"<b>Summary:</b> {a['summary'][:300]}{'...' if len(a['summary'])>300 else ''}", styles['Normal']))
# Latest coverage (if dates are present)
recent = [a for a in articles if a.get('date')]
if recent:
try:
recent.sort(key=lambda x: x.get('date'), reverse=True)
r = recent[0]
story.append(Spacer(1, 0.15 * inch))
story.append(Paragraph("Most Recent Coverage:", styles['Heading3']))
story.append(Paragraph(f"<b>Title:</b> {r.get('title','N/A')}", styles['Normal']))
story.append(Paragraph(f"<b>Source:</b> {r.get('source','N/A')}", styles['Normal']))
story.append(Paragraph(f"<b>Date:</b> {r.get('date')}", styles['Normal']))
story.append(Paragraph(f"<b>Sentiment Score:</b> {(r.get('sentiment') or {}).get('compound', 0.0):.3f}", styles['Normal']))
except Exception:
pass
except Exception as e:
logger.exception(f"Stories section creation failed: {e}")
story.append(Paragraph("Story analysis data unavailable.", styles['Normal']))
return story
def _create_keywords_section(keywords: List[Dict[str, Any]], styles) -> List[Any]:
story: List[Any] = []
try:
top = keywords[:15]
if not top:
story.append(Paragraph("No keywords extracted.", styles['Normal']))
return story
data = [['Keyword', 'Score', 'Category']]
for kw in top:
score = kw.get('score', 0.0)
relevance = kw.get('relevance', 'medium')
data.append([kw.get('keyword', 'N/A'), f"{score:.3f}", str(relevance).title()])
table = Table(data)
table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.HexColor('#2E86AB')),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, 0), 10),
('BOTTOMPADDING', (0, 0), (-1, 0), 10),
('BACKGROUND', (0, 1), (-1, -1), colors.beige),
('GRID', (0, 0), (-1, -1), 1, colors.black),
]))
story.append(table)
story.append(Spacer(1, 0.15 * inch))
expl = ("Keywords were extracted using the YAKE algorithm, which identifies relevant terms and phrases "
"based on statistical features of the text corpus.")
story.append(Paragraph(expl, styles['Normal']))
except Exception as e:
logger.exception(f"Keywords section creation failed: {e}")
story.append(Paragraph("Keyword analysis data unavailable.", styles['Normal']))
return story
def _create_sources_section(results: Dict[str, Any], styles) -> List[Any]:
story: List[Any] = []
try:
articles = results.get('articles', []) or []
if not articles:
story.append(Paragraph("No source data available.", styles['Normal']))
return story
# Count sources
counts: Dict[str, int] = {}
for a in articles:
src = a.get('source', 'Unknown')
counts[src] = counts.get(src, 0) + 1
total = len(articles)
data = [['News Source', 'Article Count', 'Percentage']]
for src, ct in sorted(counts.items(), key=lambda x: x[1], reverse=True):
data.append([src, str(ct), f"{_safe_div(ct, total) * 100:.1f}%"])
table = Table(data)
table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.HexColor('#2E86AB')),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, 0), 10),
('BOTTOMPADDING', (0, 0), (-1, 0), 10),
('BACKGROUND', (0, 1), (-1, -1), colors.beige),
('GRID', (0, 0), (-1, -1), 1, colors.black),
]))
story.append(table)
story.append(Spacer(1, 0.15 * inch))
expl = (f"Articles were collected from {len(counts)} different sources, providing diverse perspectives. "
"Source diversity helps ensure comprehensive coverage and reduces bias.")
story.append(Paragraph(expl, styles['Normal']))
except Exception as e:
logger.exception(f"Sources section creation failed: {e}")
story.append(Paragraph("Source analysis data unavailable.", styles['Normal']))
return story
def _create_methodology_section(results: Dict[str, Any], total: int, proc_time: float) -> str:
meth = (
"This analysis employed a comprehensive NLP pipeline:\n\n"
"1. <b>Data Collection:</b> Articles were gathered from multiple RSS/business feeds. "
"Content was filtered for relevance and deduplicated.\n\n"
"2. <b>Sentiment Analysis:</b> VADER (general), Loughran–McDonald (finance), and FinBERT (finance) were combined. "
"Final scores reflect a weighted composite.\n\n"
"3. <b>Summarization & Keywords:</b> Articles were cleaned and summarized (transformer models when available), "
"and key themes extracted with YAKE.\n\n"
"4. <b>Quality Controls:</b> English-only filtering, minimum length checks, and relevance filters.\n\n"
)
try:
meth += f"Processed {total} articles in {proc_time:.2f} seconds."
except Exception:
pass
return meth
# -------------------------------
# FPDF fallback
# -------------------------------
def _generate_simple_pdf_fallback(results: Dict[str, Any]) -> io.BytesIO:
total, dist_counts, avg = _norm_dist_from_results(results)
query = results.get('query', 'N/A')
pdf = FPDF()
pdf.add_page()
pdf.set_font('Arial', 'B', 16)
pdf.cell(0, 10, 'News Analysis Report', ln=True)
pdf.ln(5)
pdf.set_font('Arial', '', 12)
pdf.cell(0, 8, f"Query: {query}", ln=True)
pdf.cell(0, 8, f"Articles: {total}", ln=True)
pdf.cell(0, 8, f"Average Sentiment: {avg:.3f}", ln=True)
pdf.ln(5)
pos, neg, neu = dist_counts.get("Positive", 0), dist_counts.get("Negative", 0), dist_counts.get("Neutral", 0)
pdf.cell(0, 8, "Sentiment Distribution:", ln=True)
pdf.cell(0, 8, f" Positive: {pos} ({_safe_div(pos, total)*100:.1f}%)", ln=True)
pdf.cell(0, 8, f" Negative: {neg} ({_safe_div(neg, total)*100:.1f}%)", ln=True)
pdf.cell(0, 8, f" Neutral: {neu} ({_safe_div(neu, total)*100:.1f}%)", ln=True)
buf = io.BytesIO()
pdf_bytes = pdf.output(dest='S').encode('latin1')
buf.write(pdf_bytes)
buf.seek(0)
return buf
# -------------------------------
# Optional chart image (base64)
# -------------------------------
def create_chart_image(data: Dict, chart_type: str = 'pie') -> Optional[str]:
if not MATPLOTLIB_AVAILABLE:
return None
try:
plt.figure(figsize=(6, 4))
if chart_type == 'pie':
# Support both shapes
total, dist_counts, _ = _norm_dist_from_results(data if 'articles' in data else {'summary': {'distribution': data}})
labels = ['Positive', 'Negative', 'Neutral']
sizes = [
dist_counts.get('Positive', 0),
dist_counts.get('Negative', 0),
dist_counts.get('Neutral', 0),
]
plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90)
plt.title('Sentiment Distribution')
elif chart_type == 'bar' and 'articles' in data:
sources: Dict[str, int] = {}
for a in data.get('articles', []):
s = a.get('source', 'Unknown')
sources[s] = sources.get(s, 0) + 1
top = dict(sorted(sources.items(), key=lambda x: x[1], reverse=True)[:10])
plt.bar(range(len(top)), list(top.values()))
plt.xticks(range(len(top)), list(top.keys()), rotation=45, ha='right')
plt.title('Articles by Source')
plt.ylabel('Count')
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=150, bbox_inches='tight')
buf.seek(0)
img64 = base64.b64encode(buf.getvalue()).decode()
plt.close()
return img64
except Exception as e:
logger.exception(f"Chart creation failed: {e}")
return None
# -------------------------------
# CSV / JSON helpers (unchanged public API)
# -------------------------------
def generate_csv_report(results: Dict[str, Any]) -> str:
try:
import csv
import io as _io
out = _io.StringIO()
w = csv.writer(out)
w.writerow(['Title', 'Source', 'URL', 'Date', 'Sentiment_Score', 'Sentiment_Label',
'VADER_Score', 'LM_Score', 'FinBERT_Score', 'Summary'])
for a in results.get('articles', []):
s = a.get('sentiment', {}) or {}
compound = s.get('compound', 0.0)
if compound > 0.1:
label = 'Positive'
elif compound < -0.1:
label = 'Negative'
else:
label = 'Neutral'
w.writerow([
a.get('title', ''),
a.get('source', ''),
a.get('url', ''),
a.get('date', ''),
compound,
label,
s.get('vader', ''),
s.get('loughran_mcdonald', ''),
s.get('finbert', ''),
(a.get('summary', '')[:200] + '...') if len(a.get('summary', '') or '') > 200 else a.get('summary', '')
])
return out.getvalue()
except Exception as e:
logger.exception(f"CSV generation failed: {e}")
return "Error generating CSV report"
def generate_json_report(results: Dict[str, Any]) -> str:
try:
import json
meta = {
'report_generated': datetime.now().isoformat(),
'query': results.get('query', ''),
'languages': results.get('languages', ['English']),
}
total, dist_counts, avg = _norm_dist_from_results(results)
summary = {
'total_articles': total,
'average_sentiment': avg,
'sentiment_distribution': dist_counts,
'top_sources': _get_top_sources(results),
}
report = {
'metadata': meta,
'summary': summary,
'articles': results.get('articles', []),
'keywords': (results.get('keywords', []) or [])[:20],
'analysis_methods': {
'sentiment_models': ['VADER', 'Loughran-McDonald', 'FinBERT'],
'summarization_model': 'BART/DistilBART/T5 (when available)',
'keyword_extraction': 'YAKE',
'translation_models': ['Helsinki-NLP Opus-MT']
}
}
return json.dumps(report, indent=2, default=str, ensure_ascii=False)
except Exception as e:
logger.exception(f"JSON generation failed: {e}")
try:
import json
return json.dumps({'error': str(e)}, indent=2)
except Exception:
return '{"error":"JSON generation failed"}'
def _get_top_sources(results: Dict[str, Any]) -> List[Dict[str, Any]]:
try:
arts = results.get('articles', []) or []
total = len(arts)
counts: Dict[str, int] = {}
for a in arts:
src = a.get('source', 'Unknown')
counts[src] = counts.get(src, 0) + 1
items = [
{'source': s, 'count': c, 'percentage': round(_safe_div(c, total) * 100.0, 1)}
for s, c in counts.items()
]
return sorted(items, key=lambda x: x['count'], reverse=True)[:10]
except Exception as e:
logger.exception(f"Top sources calculation failed: {e}")
return []
def validate_report_data(results: Dict[str, Any]) -> bool:
"""
Validate that results contain required data for reporting.
We’re lenient now: require 'articles' and 'query'.
"""
if 'query' not in results or 'articles' not in results:
logger.error("Missing required keys: 'query' and/or 'articles'")
return False
if not isinstance(results['articles'], list) or len(results['articles']) == 0:
logger.error("No articles available for reporting")
return False
return True
__all__ = [
'generate_pdf_report',
'generate_csv_report',
'generate_json_report',
'create_chart_image',
'validate_report_data',
]
|