File size: 12,621 Bytes
8f8d0f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import logging
from typing import Dict, List, Optional
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import torch
import re

logger = logging.getLogger(__name__)

class MultilingualTranslator:
    """Multilingual translation with support for Hindi and Tamil"""
    
    def __init__(self):
        self.translators = {}
        self.language_codes = {
            'Hindi': 'hi',
            'Tamil': 'ta',
            'English': 'en'
        }
        
        # Supported translation pairs
        self.supported_pairs = {
            'en-hi': 'Helsinki-NLP/opus-mt-en-hi',
            'en-ta': 'Helsinki-NLP/opus-mt-en-mul',  # Multilingual model for Tamil
            'hi-en': 'Helsinki-NLP/opus-mt-hi-en',
            'ta-en': 'Helsinki-NLP/opus-mt-mul-en'
        }
        
        self._initialize_models()
        logger.info("MultilingualTranslator initialized")
    
    def _initialize_models(self):
        """Initialize translation models on-demand"""
        # Don't load all models at startup to save memory
        # They will be loaded when first needed
        logger.info("Translation models will be loaded on-demand")
    
    def _load_translator(self, source_lang: str, target_lang: str) -> Optional[object]:
        """Load a specific translator model"""
        pair_key = f"{source_lang}-{target_lang}"
        
        if pair_key in self.translators:
            return self.translators[pair_key]
        
        try:
            model_name = self.supported_pairs.get(pair_key)
            if not model_name:
                logger.error(f"No model available for {source_lang} -> {target_lang}")
                return None
            
            # Use CPU for Hugging Face Spaces compatibility
            device = -1  # CPU only
            
            translator = pipeline(
                "translation",
                model=model_name,
                device=device,
                framework="pt"
            )
            
            self.translators[pair_key] = translator
            logger.info(f"Loaded translator for {source_lang} -> {target_lang}")
            
            return translator
            
        except Exception as e:
            logger.error(f"Failed to load translator {pair_key}: {str(e)}")
            return None
    
    def translate(self, text: str, target_lang: str, source_lang: str = 'English') -> str:
        """Translate text to target language"""
        if not text or not text.strip():
            return ""
        
        # Get language codes
        source_code = self.language_codes.get(source_lang, 'en')
        target_code = self.language_codes.get(target_lang, target_lang.lower()[:2])
        
        # If source and target are the same, return original text
        if source_code == target_code:
            return text
        
        try:
            # Load the appropriate translator
            translator = self._load_translator(source_code, target_code)
            
            if not translator:
                return self._fallback_translate(text, target_lang)
            
            # Clean and prepare text
            cleaned_text = self._prepare_text_for_translation(text)
            
            if not cleaned_text:
                return text
            
            # Split long text into chunks for translation
            if len(cleaned_text.split()) > 200:
                return self._translate_long_text(cleaned_text, translator)
            else:
                return self._translate_chunk(cleaned_text, translator)
                
        except Exception as e:
            logger.error(f"Translation failed: {str(e)}")
            return self._fallback_translate(text, target_lang)
    
    def _translate_chunk(self, text: str, translator) -> str:
        """Translate a single chunk of text"""
        try:
            result = translator(text, max_length=512)
            
            if result and len(result) > 0:
                translated = result[0].get('translation_text', text)
                return self._post_process_translation(translated)
            
            return text
            
        except Exception as e:
            logger.error(f"Chunk translation failed: {str(e)}")
            return text
    
    def _translate_long_text(self, text: str, translator) -> str:
        """Translate long text by splitting into chunks"""
        try:
            # Split by sentences
            sentences = self._split_into_sentences(text)
            
            if not sentences:
                return text
            
            translated_sentences = []
            current_chunk = ""
            
            for sentence in sentences:
                # If adding this sentence would make chunk too long, translate current chunk
                if len((current_chunk + " " + sentence).split()) > 150 and current_chunk:
                    translated = self._translate_chunk(current_chunk, translator)
                    translated_sentences.append(translated)
                    current_chunk = sentence
                else:
                    if current_chunk:
                        current_chunk += " " + sentence
                    else:
                        current_chunk = sentence
            
            # Translate remaining chunk
            if current_chunk:
                translated = self._translate_chunk(current_chunk, translator)
                translated_sentences.append(translated)
            
            return " ".join(translated_sentences)
            
        except Exception as e:
            logger.error(f"Long text translation failed: {str(e)}")
            return text
    
    def _split_into_sentences(self, text: str) -> List[str]:
        """Split text into sentences"""
        try:
            # Simple sentence splitting
            sentences = re.split(r'[.!?]+\s+', text)
            sentences = [s.strip() for s in sentences if s.strip()]
            
            return sentences
            
        except Exception as e:
            logger.error(f"Sentence splitting failed: {str(e)}")
            return [text]
    
    def _prepare_text_for_translation(self, text: str) -> str:
        """Prepare text for translation"""
        if not text:
            return ""
        
        # Remove URLs
        text = re.sub(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', '', text)
        
        # Remove email addresses
        text = re.sub(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', '', text)
        
        # Clean excessive whitespace
        text = re.sub(r'\s+', ' ', text)
        
        # Remove special characters that might cause issues
        text = re.sub(r'[^\w\s.,!?;:\-\'"()/%$]', '', text)
        
        return text.strip()
    
    def _post_process_translation(self, text: str) -> str:
        """Post-process translated text"""
        if not text:
            return ""
        
        # Clean up extra spaces
        text = re.sub(r'\s+', ' ', text)
        
        # Capitalize first letter if it's a sentence
        if text and len(text) > 1:
            text = text[0].upper() + text[1:]
        
        return text.strip()
    
    def _fallback_translate(self, text: str, target_lang: str) -> str:
        """Fallback translation with basic text processing"""
        logger.warning(f"Using fallback translation for {target_lang}")
        
        # For demonstration purposes, we'll return the original text with a note
        # In a production system, you might use a different translation service
        if target_lang.lower() in ['hindi', 'hi']:
            return f"[Hindi] {text}"
        elif target_lang.lower() in ['tamil', 'ta']:
            return f"[Tamil] {text}"
        else:
            return text
    
    def batch_translate(self, texts: List[str], target_lang: str, source_lang: str = 'English') -> List[str]:
        """Translate multiple texts"""
        translations = []
        
        for text in texts:
            try:
                translation = self.translate(text, target_lang, source_lang)
                translations.append(translation)
            except Exception as e:
                logger.error(f"Batch translation failed for one text: {str(e)}")
                translations.append(self._fallback_translate(text, target_lang))
        
        return translations
    
    def detect_language(self, text: str) -> str:
        """Simple language detection (basic implementation)"""
        try:
            # Basic detection using character patterns
            if not text:
                return 'en'
            
            # Check for Devanagari script (Hindi)
            if re.search(r'[\u0900-\u097F]', text):
                return 'hi'
            
            # Check for Tamil script
            if re.search(r'[\u0B80-\u0BFF]', text):
                return 'ta'
            
            # Default to English
            return 'en'
            
        except Exception as e:
            logger.error(f"Language detection failed: {str(e)}")
            return 'en'
    
    def get_supported_languages(self) -> List[str]:
        """Get list of supported languages"""
        return list(self.language_codes.keys())
    
    def is_translation_available(self, source_lang: str, target_lang: str) -> bool:
        """Check if translation is available between two languages"""
        source_code = self.language_codes.get(source_lang, source_lang.lower()[:2])
        target_code = self.language_codes.get(target_lang, target_lang.lower()[:2])
        
        pair_key = f"{source_code}-{target_code}"
        return pair_key in self.supported_pairs
    
    def translate_with_confidence(self, text: str, target_lang: str, source_lang: str = 'English') -> Dict[str, any]:
        """Translate text and return result with confidence metrics"""
        try:
            translated_text = self.translate(text, target_lang, source_lang)
            
            # Simple confidence calculation based on text characteristics
            confidence = self._calculate_translation_confidence(text, translated_text, target_lang)
            
            return {
                'original_text': text,
                'translated_text': translated_text,
                'source_language': source_lang,
                'target_language': target_lang,
                'confidence': confidence,
                'method': 'neural_translation' if translated_text != text else 'fallback'
            }
            
        except Exception as e:
            logger.error(f"Translation with confidence failed: {str(e)}")
            return {
                'original_text': text,
                'translated_text': text,
                'source_language': source_lang,
                'target_language': target_lang,
                'confidence': 0.0,
                'method': 'error',
                'error': str(e)
            }
    
    def _calculate_translation_confidence(self, original: str, translated: str, target_lang: str) -> float:
        """Calculate a simple confidence score for translation"""
        try:
            # If translation failed (same as original), low confidence
            if original == translated and target_lang != 'English':
                return 0.2
            
            # If text is very short, moderate confidence
            if len(original.split()) < 5:
                return 0.7
            
            # If translation is significantly different in length, lower confidence
            original_len = len(original.split())
            translated_len = len(translated.split())
            
            length_ratio = min(original_len, translated_len) / max(original_len, translated_len)
            
            if length_ratio < 0.5:
                return 0.6
            elif length_ratio < 0.7:
                return 0.8
            else:
                return 0.9
                
        except Exception as e:
            logger.error(f"Confidence calculation failed: {str(e)}")
            return 0.5

# Utility functions
def get_language_name(code: str) -> str:
    """Get full language name from code"""
    code_to_name = {
        'en': 'English',
        'hi': 'Hindi', 
        'ta': 'Tamil'
    }
    return code_to_name.get(code.lower(), code)

def get_language_code(name: str) -> str:
    """Get language code from name"""
    name_to_code = {
        'english': 'en',
        'hindi': 'hi',
        'tamil': 'ta'
    }
    return name_to_code.get(name.lower(), name.lower()[:2])