wekey1998's picture
Rename nlp_module (1).py to nlp.py
d3fb180 verified
import re
import string
import logging
from typing import Dict, List, Any, Optional
import pandas as pd
import numpy as np
from collections import Counter
# NLTK imports
import nltk
try:
from nltk.sentiment import SentimentIntensityAnalyzer
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize, sent_tokenize
from nltk.stem import PorterStemmer
except ImportError:
pass
# Download required NLTK data
try:
nltk.download('vader_lexicon', quiet=True)
nltk.download('punkt', quiet=True)
nltk.download('stopwords', quiet=True)
except:
pass
# Transformers for FinBERT
try:
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import torch
except ImportError:
pass
# YAKE for keyword extraction
try:
import yake
except ImportError:
pass
logger = logging.getLogger(__name__)
class SentimentAnalyzer:
"""Multi-model sentiment analysis"""
def __init__(self):
self.vader_analyzer = None
self.finbert_pipeline = None
self.loughran_mcdonald_dict = None
self._initialize_models()
logger.info("SentimentAnalyzer initialized")
def _initialize_models(self):
"""Initialize all sentiment analysis models"""
# VADER
try:
self.vader_analyzer = SentimentIntensityAnalyzer()
logger.info("VADER model loaded")
except Exception as e:
logger.error(f"Failed to load VADER: {str(e)}")
# FinBERT
try:
model_name = "ProsusAI/finbert"
self.finbert_pipeline = pipeline(
"sentiment-analysis",
model=model_name,
tokenizer=model_name,
device=0 if torch.cuda.is_available() else -1
)
logger.info("FinBERT model loaded")
except Exception as e:
logger.warning(f"Failed to load FinBERT, using CPU fallback: {str(e)}")
try:
model_name = "ProsusAI/finbert"
self.finbert_pipeline = pipeline(
"sentiment-analysis",
model=model_name,
tokenizer=model_name,
device=-1
)
logger.info("FinBERT model loaded on CPU")
except Exception as e2:
logger.error(f"Failed to load FinBERT completely: {str(e2)}")
# Loughran-McDonald Dictionary
try:
self.loughran_mcdonald_dict = self._load_loughran_mcdonald()
logger.info("Loughran-McDonald dictionary loaded")
except Exception as e:
logger.error(f"Failed to load Loughran-McDonald dictionary: {str(e)}")
def _load_loughran_mcdonald(self) -> Dict[str, List[str]]:
"""Load Loughran-McDonald financial sentiment dictionary"""
# Simplified version with key financial sentiment words
return {
'positive': [
'profit', 'profitable', 'profitability', 'revenue', 'revenues', 'growth',
'growing', 'increase', 'increased', 'increasing', 'success', 'successful',
'gain', 'gains', 'benefit', 'benefits', 'improvement', 'improved', 'strong',
'stronger', 'excellent', 'outstanding', 'exceed', 'exceeded', 'exceeds',
'beat', 'beats', 'positive', 'optimistic', 'bullish', 'rise', 'rising',
'surge', 'surged', 'boom', 'booming', 'expand', 'expansion', 'opportunity',
'opportunities', 'advance', 'advances', 'achievement', 'achieve', 'winner'
],
'negative': [
'loss', 'losses', 'lose', 'losing', 'decline', 'declining', 'decrease',
'decreased', 'decreasing', 'fall', 'falling', 'drop', 'dropped', 'plunge',
'plunged', 'crash', 'crashed', 'failure', 'failed', 'weak', 'weakness',
'poor', 'worse', 'worst', 'bad', 'terrible', 'crisis', 'problem', 'problems',
'risk', 'risks', 'risky', 'concern', 'concerns', 'worried', 'worry',
'negative', 'pessimistic', 'bearish', 'bankruptcy', 'bankrupt', 'deficit',
'debt', 'lawsuit', 'sue', 'sued', 'investigation', 'fraud', 'scandal',
'volatility', 'volatile', 'uncertainty', 'uncertain', 'challenge', 'challenges'
]
}
def analyze_sentiment(self, text: str, models: List[str] = None) -> Dict[str, Any]:
"""Analyze sentiment using multiple models"""
if models is None:
models = ['VADER', 'Loughran-McDonald', 'FinBERT']
results = {}
# Clean text
cleaned_text = self._clean_text(text)
# VADER Analysis
if 'VADER' in models and self.vader_analyzer:
try:
vader_scores = self.vader_analyzer.polarity_scores(cleaned_text)
results['vader'] = vader_scores['compound']
results['vader_detailed'] = vader_scores
except Exception as e:
logger.error(f"VADER analysis failed: {str(e)}")
results['vader'] = 0.0
# Loughran-McDonald Analysis
if 'Loughran-McDonald' in models and self.loughran_mcdonald_dict:
try:
lm_score = self._analyze_loughran_mcdonald(cleaned_text)
results['loughran_mcdonald'] = lm_score
except Exception as e:
logger.error(f"Loughran-McDonald analysis failed: {str(e)}")
results['loughran_mcdonald'] = 0.0
# FinBERT Analysis
if 'FinBERT' in models and self.finbert_pipeline:
try:
# Truncate text for FinBERT (max 512 tokens)
truncated_text = cleaned_text[:2000] # Approximate token limit
finbert_result = self.finbert_pipeline(truncated_text)[0]
# Convert to numerical score
label = finbert_result['label'].lower()
confidence = finbert_result['score']
if label == 'positive':
finbert_score = confidence
elif label == 'negative':
finbert_score = -confidence
else: # neutral
finbert_score = 0.0
results['finbert'] = finbert_score
results['finbert_detailed'] = finbert_result
except Exception as e:
logger.error(f"FinBERT analysis failed: {str(e)}")
results['finbert'] = 0.0
# Calculate composite score
scores = []
weights = {'vader': 0.3, 'loughran_mcdonald': 0.4, 'finbert': 0.3}
for model in ['vader', 'loughran_mcdonald', 'finbert']:
if model in results:
scores.append(results[model] * weights[model])
results['compound'] = sum(scores) if scores else 0.0
return results
def _clean_text(self, text: str) -> str:
"""Clean text for sentiment analysis"""
if not text:
return ""
# Remove URLs
text = re.sub(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', '', text)
# Remove email addresses
text = re.sub(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', '', text)
# Remove extra whitespace
text = re.sub(r'\s+', ' ', text)
# Remove special characters but keep basic punctuation
text = re.sub(r'[^\w\s.,!?;:\-\'"()]', '', text)
return text.strip()
def _analyze_loughran_mcdonald(self, text: str) -> float:
"""Analyze sentiment using Loughran-McDonald dictionary"""
try:
words = word_tokenize(text.lower())
positive_count = sum(1 for word in words if word in self.loughran_mcdonald_dict['positive'])
negative_count = sum(1 for word in words if word in self.loughran_mcdonald_dict['negative'])
total_sentiment_words = positive_count + negative_count
if total_sentiment_words == 0:
return 0.0
# Calculate normalized score
score = (positive_count - negative_count) / len(words) * 10 # Scale factor
# Clamp to [-1, 1] range
return max(-1.0, min(1.0, score))
except Exception as e:
logger.error(f"Loughran-McDonald calculation error: {str(e)}")
return 0.0
class KeywordExtractor:
"""Extract important keywords from text using YAKE"""
def __init__(self):
self.stop_words = set()
try:
self.stop_words = set(stopwords.words('english'))
except:
# Fallback stop words
self.stop_words = {
'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for',
'of', 'with', 'by', 'is', 'are', 'was', 'were', 'be', 'been', 'have',
'has', 'had', 'do', 'does', 'did', 'will', 'would', 'could', 'should',
'may', 'might', 'must', 'can', 'this', 'that', 'these', 'those'
}
logger.info("KeywordExtractor initialized")
def extract_keywords(self, text: str, num_keywords: int = 20) -> List[Dict[str, Any]]:
"""Extract keywords using YAKE algorithm"""
try:
# Use YAKE if available
if 'yake' in globals():
return self._extract_with_yake(text, num_keywords)
else:
return self._extract_with_frequency(text, num_keywords)
except Exception as e:
logger.error(f"Keyword extraction failed: {str(e)}")
return []
def _extract_with_yake(self, text: str, num_keywords: int) -> List[Dict[str, Any]]:
"""Extract keywords using YAKE algorithm"""
try:
# YAKE configuration
kw_extractor = yake.KeywordExtractor(
lan="en",
n=3, # n-gram size
dedupLim=0.9,
top=num_keywords,
features=None
)
keywords = kw_extractor.extract_keywords(text)
# Convert to desired format (lower score = more relevant in YAKE)
result = []
for keyword, score in keywords:
result.append({
'keyword': keyword,
'score': 1.0 / (1.0 + score), # Invert score so higher = more relevant
'relevance': 'high' if score < 0.1 else 'medium' if score < 0.3 else 'low'
})
return result
except Exception as e:
logger.error(f"YAKE extraction failed: {str(e)}")
return self._extract_with_frequency(text, num_keywords)
def _extract_with_frequency(self, text: str, num_keywords: int) -> List[Dict[str, Any]]:
"""Fallback keyword extraction using frequency analysis"""
try:
# Clean and tokenize
words = word_tokenize(text.lower())
# Filter words
filtered_words = [
word for word in words
if (word not in self.stop_words and
word not in string.punctuation and
len(word) > 2 and
word.isalpha())
]
# Count frequencies
word_freq = Counter(filtered_words)
# Get top keywords
top_words = word_freq.most_common(num_keywords)
# Calculate relevance scores
max_freq = top_words[0][1] if top_words else 1
result = []
for word, freq in top_words:
score = freq / max_freq
result.append({
'keyword': word,
'score': score,
'relevance': 'high' if score > 0.7 else 'medium' if score > 0.3 else 'low'
})
return result
except Exception as e:
logger.error(f"Frequency extraction failed: {str(e)}")
return []
class TextProcessor:
"""Text preprocessing and cleaning utilities"""
def __init__(self):
self.stemmer = PorterStemmer()
logger.info("TextProcessor initialized")
def clean_article_content(self, content: str) -> str:
"""Clean article content by removing boilerplate"""
if not content:
return ""
# Remove common boilerplate patterns
boilerplate_patterns = [
r'Subscribe to our newsletter.*',
r'Sign up for.*',
r'Follow us on.*',
r'Copyright.*',
r'All rights reserved.*',
r'Terms of use.*',
r'Privacy policy.*',
r'Cookie policy.*',
r'\d+ comments?',
r'Share this article.*',
r'Related articles?.*',
r'More from.*',
r'Advertisement.*',
r'Sponsored content.*'
]
cleaned_content = content
for pattern in boilerplate_patterns:
cleaned_content = re.sub(pattern, '', cleaned_content, flags=re.IGNORECASE)
# Remove extra whitespace
cleaned_content = re.sub(r'\s+', ' ', cleaned_content)
# Remove very short sentences (likely navigation/boilerplate)
sentences = sent_tokenize(cleaned_content)
meaningful_sentences = [
sent for sent in sentences
if len(sent.split()) > 5 and not self._is_boilerplate_sentence(sent)
]
return ' '.join(meaningful_sentences).strip()
def _is_boilerplate_sentence(self, sentence: str) -> bool:
"""Check if sentence is likely boilerplate"""
boilerplate_indicators = [
'click here', 'read more', 'subscribe', 'follow us', 'contact us',
'terms of service', 'privacy policy', 'copyright', 'all rights reserved',
'advertisement', 'sponsored', 'related articles'
]
sentence_lower = sentence.lower()
return any(indicator in sentence_lower for indicator in boilerplate_indicators)
def extract_entities(self, text: str) -> Dict[str, List[str]]:
"""Extract named entities (companies, people, locations)"""
# Simple regex-based entity extraction
entities = {
'companies': [],
'people': [],
'locations': [],
'money': [],
'dates': []
}
try:
# Company patterns (simplified)
company_pattern = r'\b[A-Z][a-zA-Z]+ (?:Inc|Corp|LLC|Ltd|Company|Co)\b'
entities['companies'] = list(set(re.findall(company_pattern, text)))
# Money patterns
money_pattern = r'\$[\d,]+(?:\.\d{2})?(?:\s?(?:million|billion|trillion|k|M|B|T))?'
entities['money'] = list(set(re.findall(money_pattern, text)))
# Date patterns (simplified)
date_pattern = r'\b(?:January|February|March|April|May|June|July|August|September|October|November|December)\s+\d{1,2},?\s+\d{4}'
entities['dates'] = list(set(re.findall(date_pattern, text)))
except Exception as e:
logger.error(f"Entity extraction failed: {str(e)}")
return entities
def calculate_readability(self, text: str) -> Dict[str, float]:
"""Calculate text readability metrics"""
try:
sentences = sent_tokenize(text)
words = word_tokenize(text)
if not sentences or not words:
return {'flesch_score': 0.0, 'avg_sentence_length': 0.0, 'avg_word_length': 0.0}
# Basic metrics
num_sentences = len(sentences)
num_words = len(words)
num_syllables = sum(self._count_syllables(word) for word in words if word.isalpha())
# Average sentence length
avg_sentence_length = num_words / num_sentences
# Average word length
avg_word_length = sum(len(word) for word in words if word.isalpha()) / num_words
# Flesch Reading Ease Score (simplified)
flesch_score = 206.835 - (1.015 * avg_sentence_length) - (84.6 * (num_syllables / num_words))
return {
'flesch_score': max(0.0, min(100.0, flesch_score)),
'avg_sentence_length': avg_sentence_length,
'avg_word_length': avg_word_length
}
except Exception as e:
logger.error(f"Readability calculation failed: {str(e)}")
return {'flesch_score': 0.0, 'avg_sentence_length': 0.0, 'avg_word_length': 0.0}
def _count_syllables(self, word: str) -> int:
"""Count syllables in a word (simplified)"""
word = word.lower()
vowels = 'aeiouy'
syllable_count = 0
prev_char_was_vowel = False
for char in word:
if char in vowels:
if not prev_char_was_vowel:
syllable_count += 1
prev_char_was_vowel = True
else:
prev_char_was_vowel = False
# Handle silent e
if word.endswith('e'):
syllable_count -= 1
# Every word has at least one syllable
return max(1, syllable_count)