Update app.py
Browse files
app.py
CHANGED
@@ -1,583 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
4 |
-
import plotly.graph_objects as go
|
5 |
-
from wordcloud import WordCloud
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
import asyncio
|
8 |
-
import json
|
9 |
-
import base64
|
10 |
-
from datetime import datetime
|
11 |
-
import io
|
12 |
-
import os
|
13 |
|
14 |
-
#
|
15 |
-
from api import NewsAnalyzer
|
16 |
-
from utils import
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
# Configure page
|
20 |
st.set_page_config(
|
21 |
-
page_title="
|
22 |
-
page_icon="
|
23 |
layout="wide",
|
24 |
-
initial_sidebar_state="expanded"
|
25 |
)
|
26 |
|
27 |
-
#
|
28 |
-
st.markdown(
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
}
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
""",
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
languages = st.multiselect(
|
90 |
-
"Summary Languages",
|
91 |
-
["English", "Hindi", "Tamil"],
|
92 |
-
default=["English"]
|
93 |
-
)
|
94 |
-
include_audio = st.checkbox("Generate Audio Summaries", True)
|
95 |
-
|
96 |
-
st.subheader("🔧 Model Settings")
|
97 |
-
sentiment_models = st.multiselect(
|
98 |
-
"Sentiment Models",
|
99 |
-
["VADER", "Loughran-McDonald", "FinBERT"],
|
100 |
-
default=["VADER", "Loughran-McDonald", "FinBERT"]
|
101 |
)
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
# Update progress
|
128 |
-
status_text.text("🔍 Scraping articles...")
|
129 |
-
progress_bar.progress(20)
|
130 |
-
|
131 |
-
results = st.session_state.analyzer.analyze_news(config, progress_callback=update_progress)
|
132 |
-
st.session_state.results = results
|
133 |
-
st.session_state.analysis_complete = True
|
134 |
-
|
135 |
-
progress_bar.progress(100)
|
136 |
-
status_text.text("✅ Analysis complete!")
|
137 |
-
|
138 |
-
except Exception as e:
|
139 |
-
st.error(f"Error during analysis: {str(e)}")
|
140 |
-
st.session_state.analysis_complete = False
|
141 |
-
|
142 |
-
# Display results
|
143 |
-
if st.session_state.analysis_complete and st.session_state.results:
|
144 |
-
display_results(st.session_state.results)
|
145 |
-
|
146 |
-
elif not st.session_state.analysis_complete and query:
|
147 |
-
st.info("👆 Click 'Analyze News' to start the analysis")
|
148 |
-
|
149 |
-
else:
|
150 |
-
show_demo_dashboard()
|
151 |
-
|
152 |
-
def update_progress(progress, status):
|
153 |
-
"""Callback function for progress updates"""
|
154 |
-
try:
|
155 |
-
st.session_state.progress = progress
|
156 |
-
if st.session_state.progress_bar is not None:
|
157 |
-
st.session_state.progress_bar.progress(int(max(0, min(100, progress))))
|
158 |
-
if st.session_state.status_text is not None:
|
159 |
-
st.session_state.status_text.text(status)
|
160 |
-
except Exception:
|
161 |
-
pass
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
def display_results(results):
|
166 |
-
"""Display analysis results with interactive dashboard"""
|
167 |
-
st.header(f"📈 Analysis Results for: {results['query']}")
|
168 |
-
|
169 |
-
# Key metrics
|
170 |
-
col1, col2, col3, col4 = st.columns(4)
|
171 |
-
|
172 |
-
with col1:
|
173 |
-
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
174 |
-
st.metric("Articles Analyzed", len(results['articles']))
|
175 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
176 |
-
|
177 |
-
with col2:
|
178 |
-
avg_sentiment = results['summary']['average_sentiment']
|
179 |
-
sentiment_color = "sentiment-positive" if avg_sentiment > 0.1 else "sentiment-negative" if avg_sentiment < -0.1 else "sentiment-neutral"
|
180 |
-
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
181 |
-
st.metric("Average Sentiment", f"{avg_sentiment:.3f}")
|
182 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
183 |
-
|
184 |
-
with col3:
|
185 |
-
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
186 |
-
st.metric("Sources", len(set([article['source'] for article in results['articles']])))
|
187 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
188 |
-
|
189 |
-
with col4:
|
190 |
-
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
191 |
-
st.metric("Languages", len(results.get('languages', ['English'])))
|
192 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
193 |
-
|
194 |
-
# Tabs for different views
|
195 |
-
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["📊 Dashboard", "📰 Articles", "🎯 Sentiment", "🗣️ Audio", "📤 Export", "🔌 API"])
|
196 |
-
|
197 |
-
with tab1:
|
198 |
-
display_dashboard(results)
|
199 |
-
|
200 |
-
with tab2:
|
201 |
-
display_articles(results)
|
202 |
-
|
203 |
-
with tab3:
|
204 |
-
display_sentiment_analysis(results)
|
205 |
-
|
206 |
-
with tab4:
|
207 |
-
display_audio_summaries(results)
|
208 |
-
|
209 |
-
with tab5:
|
210 |
-
display_export_options(results)
|
211 |
-
|
212 |
-
with tab6:
|
213 |
-
display_api_info(results)
|
214 |
-
|
215 |
-
def display_dashboard(results):
|
216 |
-
"""Display main dashboard with charts"""
|
217 |
-
col1, col2 = st.columns(2)
|
218 |
-
|
219 |
-
with col1:
|
220 |
-
# Sentiment distribution
|
221 |
-
st.subheader("📊 Sentiment Distribution")
|
222 |
-
sentiment_counts = {
|
223 |
-
'Positive': sum(1 for article in results['articles'] if article['sentiment']['compound'] > 0.1),
|
224 |
-
'Negative': sum(1 for article in results['articles'] if article['sentiment']['compound'] < -0.1),
|
225 |
-
'Neutral': sum(1 for article in results['articles'] if -0.1 <= article['sentiment']['compound'] <= 0.1)
|
226 |
}
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
)
|
233 |
-
|
234 |
-
|
235 |
-
with
|
236 |
-
|
237 |
-
st.
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
fig_bar = px.bar(
|
244 |
-
x=list(source_counts.keys()),
|
245 |
-
y=list(source_counts.values()),
|
246 |
-
color=list(source_counts.values()),
|
247 |
-
color_continuous_scale="viridis"
|
248 |
)
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
{
|
257 |
-
'date': article.get('date', datetime.now()),
|
258 |
-
'sentiment': article['sentiment']['compound'],
|
259 |
-
'title': article['title'][:50] + "..." if len(article['title']) > 50 else article['title']
|
260 |
-
}
|
261 |
-
for article in results['articles']
|
262 |
-
if 'date' in article
|
263 |
-
])
|
264 |
-
|
265 |
-
if not df_timeline.empty:
|
266 |
-
fig_timeline = px.scatter(
|
267 |
-
df_timeline,
|
268 |
-
x='date',
|
269 |
-
y='sentiment',
|
270 |
-
hover_data=['title'],
|
271 |
-
color='sentiment',
|
272 |
-
color_continuous_scale=['red', 'gray', 'green'],
|
273 |
-
color_continuous_midpoint=0
|
274 |
-
)
|
275 |
-
fig_timeline.update_layout(
|
276 |
-
xaxis_title="Date",
|
277 |
-
yaxis_title="Sentiment Score",
|
278 |
-
yaxis=dict(range=[-1, 1])
|
279 |
-
)
|
280 |
-
st.plotly_chart(fig_timeline, use_container_width=True)
|
281 |
-
|
282 |
-
# Keywords word cloud
|
283 |
-
st.subheader("🔤 Key Topics")
|
284 |
-
if 'keywords' in results and results['keywords']:
|
285 |
-
col1, col2 = st.columns([2, 1])
|
286 |
-
|
287 |
-
with col1:
|
288 |
-
# Create word cloud
|
289 |
-
keywords_text = ' '.join([kw['keyword'] for kw in results['keywords'][:50]])
|
290 |
-
if keywords_text:
|
291 |
-
wordcloud = WordCloud(
|
292 |
-
width=800,
|
293 |
-
height=400,
|
294 |
-
background_color='white',
|
295 |
-
colormap='viridis'
|
296 |
-
).generate(keywords_text)
|
297 |
-
|
298 |
-
fig, ax = plt.subplots(figsize=(10, 5))
|
299 |
-
ax.imshow(wordcloud, interpolation='bilinear')
|
300 |
-
ax.axis('off')
|
301 |
-
st.pyplot(fig)
|
302 |
-
|
303 |
-
with col2:
|
304 |
-
st.write("**Top Keywords:**")
|
305 |
-
for i, kw in enumerate(results['keywords'][:10]):
|
306 |
-
st.write(f"{i+1}. {kw['keyword']} ({kw['score']:.3f})")
|
307 |
-
|
308 |
-
def display_articles(results):
|
309 |
-
"""Display individual articles with summaries"""
|
310 |
-
st.subheader(f"📰 Articles ({len(results['articles'])})")
|
311 |
-
|
312 |
-
for i, article in enumerate(results['articles']):
|
313 |
-
with st.expander(f"📄 {article['title']}", expanded=(i < 3)):
|
314 |
-
col1, col2 = st.columns([3, 1])
|
315 |
-
|
316 |
-
with col1:
|
317 |
-
st.write(f"**Source:** {article['source']}")
|
318 |
-
if 'date' in article:
|
319 |
-
st.write(f"**Date:** {article['date']}")
|
320 |
-
st.write(f"**URL:** {article.get('url', 'N/A')}")
|
321 |
-
|
322 |
-
# Sentiment
|
323 |
-
sentiment = article['sentiment']
|
324 |
-
sentiment_label = "Positive" if sentiment['compound'] > 0.1 else "Negative" if sentiment['compound'] < -0.1 else "Neutral"
|
325 |
-
sentiment_color = "sentiment-positive" if sentiment_label == "Positive" else "sentiment-negative" if sentiment_label == "Negative" else "sentiment-neutral"
|
326 |
-
st.markdown(f"**Sentiment:** <span class='{sentiment_color}'>{sentiment_label} ({sentiment['compound']:.3f})</span>", unsafe_allow_html=True)
|
327 |
-
|
328 |
-
with col2:
|
329 |
-
# Model-specific scores
|
330 |
-
st.write("**Model Scores:**")
|
331 |
-
if 'vader' in sentiment:
|
332 |
-
st.write(f"VADER: {sentiment['vader']:.3f}")
|
333 |
-
if 'loughran_mcdonald' in sentiment:
|
334 |
-
st.write(f"L&M: {sentiment['loughran_mcdonald']:.3f}")
|
335 |
-
if 'finbert' in sentiment:
|
336 |
-
st.write(f"FinBERT: {sentiment['finbert']:.3f}")
|
337 |
-
|
338 |
-
# Summary
|
339 |
-
if 'summary' in article:
|
340 |
-
st.write("**Summary:**")
|
341 |
-
st.write(article['summary'])
|
342 |
-
|
343 |
-
# Multilingual summaries
|
344 |
-
if 'summaries' in article:
|
345 |
-
for lang, summary in article['summaries'].items():
|
346 |
-
if lang != 'English':
|
347 |
-
st.write(f"**Summary ({lang}):**")
|
348 |
-
st.write(summary)
|
349 |
-
|
350 |
-
def display_sentiment_analysis(results):
|
351 |
-
"""Display detailed sentiment analysis"""
|
352 |
-
st.subheader("🎯 Detailed Sentiment Analysis")
|
353 |
-
|
354 |
-
# Model comparison
|
355 |
-
if results['articles']:
|
356 |
-
model_data = []
|
357 |
-
for article in results['articles']:
|
358 |
-
sentiment = article['sentiment']
|
359 |
-
row = {'title': article['title'][:30] + "..."}
|
360 |
-
if 'vader' in sentiment:
|
361 |
-
row['VADER'] = sentiment['vader']
|
362 |
-
if 'loughran_mcdonald' in sentiment:
|
363 |
-
row['Loughran-McDonald'] = sentiment['loughran_mcdonald']
|
364 |
-
if 'finbert' in sentiment:
|
365 |
-
row['FinBERT'] = sentiment['finbert']
|
366 |
-
row['Final Score'] = sentiment['compound']
|
367 |
-
model_data.append(row)
|
368 |
-
|
369 |
-
df_models = pd.DataFrame(model_data)
|
370 |
-
st.write("**Model Comparison:**")
|
371 |
-
st.dataframe(df_models, use_container_width=True)
|
372 |
-
|
373 |
-
# Correlation heatmap
|
374 |
-
numeric_cols = [col for col in df_models.columns if col != 'title']
|
375 |
-
if len(numeric_cols) > 1:
|
376 |
-
corr_matrix = df_models[numeric_cols].corr()
|
377 |
-
fig_heatmap = px.imshow(
|
378 |
-
corr_matrix,
|
379 |
-
text_auto=True,
|
380 |
-
aspect="auto",
|
381 |
-
color_continuous_scale="RdBu_r",
|
382 |
-
color_continuous_midpoint=0
|
383 |
-
)
|
384 |
-
fig_heatmap.update_layout(title="Model Correlation Matrix")
|
385 |
-
st.plotly_chart(fig_heatmap, use_container_width=True)
|
386 |
-
|
387 |
-
# Top positive and negative articles
|
388 |
-
col1, col2 = st.columns(2)
|
389 |
-
|
390 |
-
with col1:
|
391 |
-
st.write("**Most Positive Articles:**")
|
392 |
-
positive_articles = sorted(
|
393 |
-
results['articles'],
|
394 |
-
key=lambda x: x['sentiment']['compound'],
|
395 |
-
reverse=True
|
396 |
-
)[:5]
|
397 |
-
|
398 |
-
for article in positive_articles:
|
399 |
-
st.write(f"• {article['title'][:50]}... ({article['sentiment']['compound']:.3f})")
|
400 |
-
|
401 |
-
with col2:
|
402 |
-
st.write("**Most Negative Articles:**")
|
403 |
-
negative_articles = sorted(
|
404 |
-
results['articles'],
|
405 |
-
key=lambda x: x['sentiment']['compound']
|
406 |
-
)[:5]
|
407 |
-
|
408 |
-
for article in negative_articles:
|
409 |
-
st.write(f"• {article['title'][:50]}... ({article['sentiment']['compound']:.3f})")
|
410 |
-
|
411 |
-
def display_audio_summaries(results):
|
412 |
-
"""Display audio summaries for different languages"""
|
413 |
-
st.subheader("🎵 Audio Summaries")
|
414 |
-
|
415 |
-
if 'audio_files' in results:
|
416 |
-
for lang, audio_file in results['audio_files'].items():
|
417 |
-
st.write(f"**{lang} Summary:**")
|
418 |
-
|
419 |
-
# Create audio player
|
420 |
-
if os.path.exists(audio_file):
|
421 |
-
with open(audio_file, 'rb') as audio_file_obj:
|
422 |
-
audio_bytes = audio_file_obj.read()
|
423 |
-
st.audio(audio_bytes, format='audio/mp3')
|
424 |
else:
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
def display_export_options(results):
|
430 |
-
"""Display export options"""
|
431 |
-
st.subheader("📤 Export Results")
|
432 |
-
|
433 |
-
col1, col2, col3 = st.columns(3)
|
434 |
-
|
435 |
-
with col1:
|
436 |
-
# CSV Export
|
437 |
-
if st.button("📊 Download CSV", use_container_width=True):
|
438 |
-
csv_data = prepare_csv_export(results)
|
439 |
-
st.download_button(
|
440 |
-
label="Click to Download CSV",
|
441 |
-
data=csv_data,
|
442 |
-
file_name=f"news_analysis_{datetime.now().strftime('%Y%m%d_%H%M')}.csv",
|
443 |
-
mime="text/csv"
|
444 |
-
)
|
445 |
-
|
446 |
-
with col2:
|
447 |
-
# JSON Export
|
448 |
-
if st.button("📋 Download JSON", use_container_width=True):
|
449 |
-
json_data = json.dumps(results, indent=2, default=str)
|
450 |
st.download_button(
|
451 |
-
|
452 |
-
data=
|
453 |
-
file_name=f"news_analysis_{datetime.now().strftime('%Y%m%d_%H%M')}.
|
454 |
-
mime="application/
|
|
|
455 |
)
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
460 |
try:
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
st.
|
474 |
-
|
475 |
-
st.
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
st.write("**Sample Response:**")
|
490 |
-
sample_response = {
|
491 |
-
"query": results['query'],
|
492 |
-
"total_articles": len(results['articles']),
|
493 |
-
"average_sentiment": results['summary']['average_sentiment'],
|
494 |
-
"articles": results['articles'][:2] # Show first 2 articles as example
|
495 |
-
}
|
496 |
-
st.json(sample_response)
|
497 |
-
|
498 |
-
def prepare_csv_export(results):
|
499 |
-
"""Prepare CSV data for export"""
|
500 |
-
csv_data = []
|
501 |
-
|
502 |
-
for article in results['articles']:
|
503 |
-
row = {
|
504 |
-
'title': article['title'],
|
505 |
-
'source': article['source'],
|
506 |
-
'url': article.get('url', ''),
|
507 |
-
'date': article.get('date', ''),
|
508 |
-
'sentiment_compound': article['sentiment']['compound'],
|
509 |
-
'sentiment_label': 'Positive' if article['sentiment']['compound'] > 0.1 else 'Negative' if article['sentiment']['compound'] < -0.1 else 'Neutral',
|
510 |
-
'summary': article.get('summary', '')
|
511 |
-
}
|
512 |
-
|
513 |
-
# Add model-specific scores
|
514 |
-
if 'vader' in article['sentiment']:
|
515 |
-
row['vader_score'] = article['sentiment']['vader']
|
516 |
-
if 'loughran_mcdonald' in article['sentiment']:
|
517 |
-
row['loughran_mcdonald_score'] = article['sentiment']['loughran_mcdonald']
|
518 |
-
if 'finbert' in article['sentiment']:
|
519 |
-
row['finbert_score'] = article['sentiment']['finbert']
|
520 |
-
|
521 |
-
csv_data.append(row)
|
522 |
-
|
523 |
-
df = pd.DataFrame(csv_data)
|
524 |
-
return df.to_csv(index=False)
|
525 |
-
|
526 |
-
def show_demo_dashboard():
|
527 |
-
"""Show demo dashboard with sample data"""
|
528 |
-
st.header("🚀 Welcome to Global Business News Intelligence")
|
529 |
-
|
530 |
-
st.markdown("""
|
531 |
-
### Key Features:
|
532 |
-
- **🔍 Multi-Source News Scraping:** Aggregates news from reliable sources
|
533 |
-
- **🎯 Advanced Sentiment Analysis:** Uses VADER, Loughran-McDonald, and FinBERT models
|
534 |
-
- **🌐 Multilingual Support:** Summaries in English, Hindi, and Tamil
|
535 |
-
- **🎵 Audio Generation:** Text-to-speech for all language summaries
|
536 |
-
- **📊 Interactive Dashboard:** Real-time charts and visualizations
|
537 |
-
- **📤 Multiple Export Formats:** CSV, JSON, and PDF reports
|
538 |
-
- **🔌 API Access:** Programmatic access to all features
|
539 |
-
|
540 |
-
### Use Cases:
|
541 |
-
- **📈 Investment Research:** Track sentiment around stocks and companies
|
542 |
-
- **🏢 Brand Monitoring:** Monitor public perception of your brand
|
543 |
-
- **🔍 Market Intelligence:** Stay informed about industry trends
|
544 |
-
- **📰 Media Analysis:** Analyze coverage patterns across sources
|
545 |
-
- **🌍 Global Insights:** Access news in multiple languages
|
546 |
-
|
547 |
-
### Get Started:
|
548 |
-
1. Enter a company name, stock ticker, or keyword in the sidebar
|
549 |
-
2. Configure your analysis settings
|
550 |
-
3. Click "Analyze News" to start
|
551 |
-
4. Explore results in the interactive dashboard
|
552 |
-
5. Export your findings in multiple formats
|
553 |
-
""")
|
554 |
-
|
555 |
-
# Sample visualization
|
556 |
-
st.subheader("📊 Sample Analysis Dashboard")
|
557 |
-
|
558 |
-
# Create sample data
|
559 |
-
sample_data = {
|
560 |
-
'Sentiment': ['Positive', 'Negative', 'Neutral'],
|
561 |
-
'Count': [45, 15, 40]
|
562 |
}
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
st.
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
"""
|
3 |
+
Streamlit UI for the News Sentiment Analyzer.
|
4 |
+
- Calls the in-process FastAPI orchestrator (NewsAnalyzer) directly for zero-latency on Spaces.
|
5 |
+
- Lightweight, CPU-safe widgets with progress, charts, tables, and exports (CSV/JSON/PDF + Audio).
|
6 |
+
"""
|
7 |
+
|
8 |
+
from __future__ import annotations
|
9 |
+
|
10 |
+
import io
|
11 |
+
import json
|
12 |
+
import logging
|
13 |
+
from datetime import datetime
|
14 |
+
from typing import Any, Dict, List
|
15 |
+
|
16 |
import streamlit as st
|
17 |
import pandas as pd
|
18 |
import plotly.express as px
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Local modules
|
21 |
+
from api import analyzer # global NewsAnalyzer instance
|
22 |
+
from utils import (
|
23 |
+
setup_logging,
|
24 |
+
load_config,
|
25 |
+
calculate_sentiment_distribution,
|
26 |
+
format_number,
|
27 |
+
)
|
28 |
+
from report import generate_pdf_report # your existing PDF generator
|
29 |
+
|
30 |
+
# ------------------------------------------------------------------------------
|
31 |
+
# App setup
|
32 |
+
# ------------------------------------------------------------------------------
|
33 |
+
|
34 |
+
setup_logging()
|
35 |
+
logger = logging.getLogger("app")
|
36 |
|
|
|
37 |
st.set_page_config(
|
38 |
+
page_title="News Sentiment Analyzer",
|
39 |
+
page_icon="📰",
|
40 |
layout="wide",
|
|
|
41 |
)
|
42 |
|
43 |
+
# Minimal CSS polish
|
44 |
+
st.markdown(
|
45 |
+
"""
|
46 |
+
<style>
|
47 |
+
.small { font-size: 0.85rem; color: #666; }
|
48 |
+
.ok { color: #1b8a5a; }
|
49 |
+
.bad { color: #b00020; }
|
50 |
+
.neutral { color: #666; }
|
51 |
+
.stProgress > div > div > div { background-color: #4b8bf4; }
|
52 |
+
.block-container { padding-top: 2rem; }
|
53 |
+
</style>
|
54 |
+
""",
|
55 |
+
unsafe_allow_html=True,
|
56 |
+
)
|
57 |
+
|
58 |
+
# ------------------------------------------------------------------------------
|
59 |
+
# Sidebar controls
|
60 |
+
# ------------------------------------------------------------------------------
|
61 |
+
|
62 |
+
cfg = load_config()
|
63 |
+
|
64 |
+
st.sidebar.header("Settings")
|
65 |
+
default_query = st.sidebar.text_input("Company / Keyword", value="Tesla")
|
66 |
+
num_articles = st.sidebar.slider("Number of articles", 5, 50, 20, step=1)
|
67 |
+
languages = st.sidebar.multiselect(
|
68 |
+
"Summaries in languages",
|
69 |
+
options=["English", "Hindi", "Tamil"],
|
70 |
+
default=["English"],
|
71 |
+
)
|
72 |
+
include_audio = st.sidebar.checkbox("Generate audio summary", value=True)
|
73 |
+
sentiment_models = st.sidebar.multiselect(
|
74 |
+
"Sentiment models",
|
75 |
+
options=["VADER", "Loughran-McDonald", "FinBERT"],
|
76 |
+
default=["VADER", "Loughran-McDonald", "FinBERT"],
|
77 |
+
)
|
78 |
+
st.sidebar.caption("Tip: disable FinBERT if your Space has < 2GB RAM.")
|
79 |
+
|
80 |
+
run_btn = st.sidebar.button("Analyze", use_container_width=True, type="primary")
|
81 |
+
|
82 |
+
# ------------------------------------------------------------------------------
|
83 |
+
# Header
|
84 |
+
# ------------------------------------------------------------------------------
|
85 |
+
|
86 |
+
st.title("📰 News Sentiment Analyzer")
|
87 |
+
st.caption("Scrape → Summarize → Sentiment → Keywords → Multilingual → Audio — deployed on Hugging Face Spaces")
|
88 |
+
|
89 |
+
# ------------------------------------------------------------------------------
|
90 |
+
# Helper functions
|
91 |
+
# ------------------------------------------------------------------------------
|
92 |
+
|
93 |
+
def _articles_to_df(articles: List[Dict[str, Any]]) -> pd.DataFrame:
|
94 |
+
rows = []
|
95 |
+
for a in articles:
|
96 |
+
rows.append(
|
97 |
+
{
|
98 |
+
"title": a.get("title", ""),
|
99 |
+
"source": a.get("source", ""),
|
100 |
+
"date": a.get("date"),
|
101 |
+
"url": a.get("url", ""),
|
102 |
+
"summary": a.get("summary", ""),
|
103 |
+
"sentiment_compound": a.get("sentiment", {}).get("compound", 0.0),
|
104 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
)
|
106 |
+
df = pd.DataFrame(rows)
|
107 |
+
if "date" in df.columns:
|
108 |
+
try:
|
109 |
+
df["date"] = pd.to_datetime(df["date"])
|
110 |
+
except Exception:
|
111 |
+
pass
|
112 |
+
return df
|
113 |
+
|
114 |
+
|
115 |
+
def _render_distribution(dist: Dict[str, Any]):
|
116 |
+
cols = st.columns(4)
|
117 |
+
cols[0].metric("Total", dist.get("total", 0))
|
118 |
+
cols[1].metric("Positive", dist.get("positive", 0))
|
119 |
+
cols[2].metric("Negative", dist.get("negative", 0))
|
120 |
+
cols[3].metric("Neutral", dist.get("neutral", 0))
|
121 |
+
|
122 |
+
chart_df = pd.DataFrame(
|
123 |
+
{
|
124 |
+
"Sentiment": ["Positive", "Negative", "Neutral"],
|
125 |
+
"Count": [
|
126 |
+
dist.get("positive", 0),
|
127 |
+
dist.get("negative", 0),
|
128 |
+
dist.get("neutral", 0),
|
129 |
+
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
}
|
131 |
+
)
|
132 |
+
fig = px.bar(chart_df, x="Sentiment", y="Count", title="Sentiment distribution")
|
133 |
+
st.plotly_chart(fig, use_container_width=True)
|
134 |
+
|
135 |
+
|
136 |
+
def _download_buttons(results: Dict[str, Any], df: pd.DataFrame):
|
137 |
+
c1, c2, c3 = st.columns(3)
|
138 |
+
|
139 |
+
# JSON
|
140 |
+
with c1:
|
141 |
+
json_bytes = json.dumps(results, default=str, indent=2).encode("utf-8")
|
142 |
+
st.download_button(
|
143 |
+
"Download JSON",
|
144 |
+
data=json_bytes,
|
145 |
+
file_name=f"news_analysis_{results['query']}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
|
146 |
+
mime="application/json",
|
147 |
+
use_container_width=True,
|
148 |
)
|
149 |
+
|
150 |
+
# CSV
|
151 |
+
with c2:
|
152 |
+
csv_bytes = df.to_csv(index=False).encode("utf-8")
|
153 |
+
st.download_button(
|
154 |
+
"Download CSV",
|
155 |
+
data=csv_bytes,
|
156 |
+
file_name=f"news_analysis_{results['query']}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
|
157 |
+
mime="text/csv",
|
158 |
+
use_container_width=True,
|
|
|
|
|
|
|
|
|
|
|
159 |
)
|
160 |
+
|
161 |
+
# PDF
|
162 |
+
with c3:
|
163 |
+
try:
|
164 |
+
pdf_obj = generate_pdf_report(results) # may return bytes or a file path
|
165 |
+
if isinstance(pdf_obj, (bytes, bytearray)):
|
166 |
+
pdf_bytes = pdf_obj
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
else:
|
168 |
+
# Assume it's a file path
|
169 |
+
with open(pdf_obj, "rb") as f:
|
170 |
+
pdf_bytes = f.read()
|
171 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
st.download_button(
|
173 |
+
"Download PDF",
|
174 |
+
data=pdf_bytes,
|
175 |
+
file_name=f"news_analysis_{results['query']}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.pdf",
|
176 |
+
mime="application/pdf",
|
177 |
+
use_container_width=True,
|
178 |
)
|
179 |
+
except Exception as e:
|
180 |
+
st.info("PDF generator not available or failed. You can still export JSON/CSV.")
|
181 |
+
logger.exception(f"PDF generation failed: {e}")
|
182 |
+
|
183 |
+
|
184 |
+
def _render_audio(audio_files: Dict[str, Any]):
|
185 |
+
if not audio_files:
|
186 |
+
return
|
187 |
+
st.subheader("Audio summaries")
|
188 |
+
for lang, path in audio_files.items():
|
189 |
+
if path:
|
190 |
+
st.markdown(f"**{lang}**")
|
191 |
try:
|
192 |
+
with open(path, "rb") as f:
|
193 |
+
st.audio(f.read(), format="audio/mp3")
|
194 |
+
except Exception:
|
195 |
+
# Some Spaces require passing the path directly
|
196 |
+
st.audio(path)
|
197 |
+
|
198 |
+
|
199 |
+
# ------------------------------------------------------------------------------
|
200 |
+
# Main flow
|
201 |
+
# ------------------------------------------------------------------------------
|
202 |
+
|
203 |
+
if run_btn:
|
204 |
+
st.info("Starting analysis… this may take ~30–60 seconds on a CPU Space (FinBERT/summarizer/translation are heavy).")
|
205 |
+
|
206 |
+
progress = st.progress(0, text="Initializing…")
|
207 |
+
|
208 |
+
def _cb(p: int, status: str):
|
209 |
+
try:
|
210 |
+
progress.progress(p, text=status)
|
211 |
+
except Exception:
|
212 |
+
pass
|
213 |
+
|
214 |
+
config = {
|
215 |
+
"query": default_query,
|
216 |
+
"num_articles": num_articles,
|
217 |
+
"languages": languages or ["English"],
|
218 |
+
"include_audio": include_audio,
|
219 |
+
"sentiment_models": sentiment_models or ["VADER", "Loughran-McDonald", "FinBERT"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
}
|
221 |
+
|
222 |
+
try:
|
223 |
+
results: Dict[str, Any] = analyzer.analyze_news(config, progress_callback=_cb)
|
224 |
+
except Exception as e:
|
225 |
+
progress.empty()
|
226 |
+
st.error(f"Analysis failed: {e}")
|
227 |
+
st.stop()
|
228 |
+
|
229 |
+
progress.empty()
|
230 |
+
|
231 |
+
# Handle empty gracefully
|
232 |
+
if not results.get("articles"):
|
233 |
+
st.warning("No articles found or scraping failed. Try a different query or reduce filters.")
|
234 |
+
st.stop()
|
235 |
+
|
236 |
+
# Header summary
|
237 |
+
st.subheader(f"Results — {results['query']}")
|
238 |
+
dist = results["summary"]["distribution"]
|
239 |
+
_render_distribution(dist)
|
240 |
+
|
241 |
+
# Keywords
|
242 |
+
if results.get("keywords"):
|
243 |
+
top_kw = ", ".join(kw["keyword"] for kw in results["keywords"][:12])
|
244 |
+
st.markdown(f"**Top keywords:** {top_kw}")
|
245 |
+
|
246 |
+
# Articles table
|
247 |
+
df = _articles_to_df(results["articles"])
|
248 |
+
st.dataframe(df, use_container_width=True, hide_index=True)
|
249 |
+
|
250 |
+
# Audio (optional)
|
251 |
+
if results.get("audio_files"):
|
252 |
+
_render_audio(results["audio_files"])
|
253 |
+
|
254 |
+
# Exports
|
255 |
+
st.divider()
|
256 |
+
_download_buttons(results, df)
|
257 |
+
|
258 |
+
else:
|
259 |
+
st.info("Enter a company/keyword on the left and click Analyze. Example: Tesla, Nvidia, Reliance, HDFC, Adani, BYD.")
|
260 |
+
|
261 |
+
# Footer
|
262 |
+
st.markdown(
|
263 |
+
"<p class='small'>Built with Streamlit + FastAPI · CPU-only · "
|
264 |
+
"FinBERT/VADER/LM sentiment · BART/T5 summarization · YAKE keywords · gTTS audio.</p>",
|
265 |
+
unsafe_allow_html=True,
|
266 |
+
)
|