Spaces:
Running
Running
File size: 5,361 Bytes
8d11d43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
from torch.utils.data import Dataset
import torch
import random
from ..utils.util import gather_video_paths_recursively
from ..utils.image_processor import ImageProcessor
from ..utils.audio import melspectrogram
import math
from pathlib import Path
from decord import AudioReader, VideoReader, cpu
class SyncNetDataset(Dataset):
def __init__(self, data_dir: str, fileslist: str, config):
if fileslist != "":
with open(fileslist) as file:
self.video_paths = [line.rstrip() for line in file]
elif data_dir != "":
self.video_paths = gather_video_paths_recursively(data_dir)
else:
raise ValueError("data_dir and fileslist cannot be both empty")
self.resolution = config.data.resolution
self.num_frames = config.data.num_frames
self.mel_window_length = math.ceil(self.num_frames / 5 * 16)
self.audio_sample_rate = config.data.audio_sample_rate
self.video_fps = config.data.video_fps
self.image_processor = ImageProcessor(resolution=config.data.resolution)
self.audio_mel_cache_dir = config.data.audio_mel_cache_dir
Path(self.audio_mel_cache_dir).mkdir(parents=True, exist_ok=True)
def __len__(self):
return len(self.video_paths)
def read_audio(self, video_path: str):
ar = AudioReader(video_path, ctx=cpu(self.worker_id), sample_rate=self.audio_sample_rate)
original_mel = melspectrogram(ar[:].asnumpy().squeeze(0))
return torch.from_numpy(original_mel)
def crop_audio_window(self, original_mel, start_index):
start_idx = int(80.0 * (start_index / float(self.video_fps)))
end_idx = start_idx + self.mel_window_length
return original_mel[:, start_idx:end_idx].unsqueeze(0)
def get_frames(self, video_reader: VideoReader):
total_num_frames = len(video_reader)
start_idx = random.randint(0, total_num_frames - self.num_frames)
frames_index = np.arange(start_idx, start_idx + self.num_frames, dtype=int)
while True:
wrong_start_idx = random.randint(0, total_num_frames - self.num_frames)
if wrong_start_idx == start_idx:
continue
wrong_frames_index = np.arange(wrong_start_idx, wrong_start_idx + self.num_frames, dtype=int)
break
frames = video_reader.get_batch(frames_index).asnumpy()
wrong_frames = video_reader.get_batch(wrong_frames_index).asnumpy()
return frames, wrong_frames, start_idx
def worker_init_fn(self, worker_id):
self.worker_id = worker_id
def __getitem__(self, idx):
while True:
try:
idx = random.randint(0, len(self) - 1)
# Get video file path
video_path = self.video_paths[idx]
vr = VideoReader(video_path, ctx=cpu(self.worker_id))
if len(vr) < 2 * self.num_frames:
continue
frames, wrong_frames, start_idx = self.get_frames(vr)
mel_cache_path = os.path.join(
self.audio_mel_cache_dir, os.path.basename(video_path).replace(".mp4", "_mel.pt")
)
if os.path.isfile(mel_cache_path):
try:
original_mel = torch.load(mel_cache_path, weights_only=True)
except Exception as e:
print(f"{type(e).__name__} - {e} - {mel_cache_path}")
os.remove(mel_cache_path)
original_mel = self.read_audio(video_path)
torch.save(original_mel, mel_cache_path)
else:
original_mel = self.read_audio(video_path)
torch.save(original_mel, mel_cache_path)
mel = self.crop_audio_window(original_mel, start_idx)
if mel.shape[-1] != self.mel_window_length:
continue
if random.choice([True, False]):
y = torch.ones(1).float()
chosen_frames = frames
else:
y = torch.zeros(1).float()
chosen_frames = wrong_frames
chosen_frames = self.image_processor.process_images(chosen_frames)
vr.seek(0) # avoid memory leak
break
except Exception as e: # Handle the exception of face not detcted
print(f"{type(e).__name__} - {e} - {video_path}")
if "vr" in locals():
vr.seek(0) # avoid memory leak
sample = dict(frames=chosen_frames, audio_samples=mel, y=y)
return sample
|