File size: 6,087 Bytes
8d11d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import math
import numpy as np
from torch.utils.data import Dataset
import torch
import random
import cv2
from ..utils.image_processor import ImageProcessor, load_fixed_mask
from ..utils.audio import melspectrogram
from decord import AudioReader, VideoReader, cpu
import torch.nn.functional as F
from pathlib import Path


class UNetDataset(Dataset):
    def __init__(self, train_data_dir: str, config):
        if config.data.train_fileslist != "":
            with open(config.data.train_fileslist) as file:
                self.video_paths = [line.rstrip() for line in file]
        elif train_data_dir != "":
            self.video_paths = []
            for file in os.listdir(train_data_dir):
                if file.endswith(".mp4"):
                    self.video_paths.append(os.path.join(train_data_dir, file))
        else:
            raise ValueError("data_dir and fileslist cannot be both empty")

        self.resolution = config.data.resolution
        self.num_frames = config.data.num_frames

        self.mel_window_length = math.ceil(self.num_frames / 5 * 16)

        self.audio_sample_rate = config.data.audio_sample_rate
        self.video_fps = config.data.video_fps
        self.image_processor = ImageProcessor(
            self.resolution, mask_image=load_fixed_mask(self.resolution, config.data.mask_image_path)
        )
        self.load_audio_data = config.model.add_audio_layer and config.run.use_syncnet
        self.audio_mel_cache_dir = config.data.audio_mel_cache_dir
        Path(self.audio_mel_cache_dir).mkdir(parents=True, exist_ok=True)

    def __len__(self):
        return len(self.video_paths)

    def read_audio(self, video_path: str):
        ar = AudioReader(video_path, ctx=cpu(self.worker_id), sample_rate=self.audio_sample_rate)
        original_mel = melspectrogram(ar[:].asnumpy().squeeze(0))
        return torch.from_numpy(original_mel)

    def crop_audio_window(self, original_mel, start_index):
        start_idx = int(80.0 * (start_index / float(self.video_fps)))
        end_idx = start_idx + self.mel_window_length
        return original_mel[:, start_idx:end_idx].unsqueeze(0)

    def get_frames(self, video_reader: VideoReader):
        total_num_frames = len(video_reader)

        start_idx = random.randint(0, total_num_frames - self.num_frames)
        gt_frames_index = np.arange(start_idx, start_idx + self.num_frames, dtype=int)

        while True:
            ref_start_idx = random.randint(0, total_num_frames - self.num_frames)
            if ref_start_idx > start_idx - self.num_frames and ref_start_idx < start_idx + self.num_frames:
                continue
            ref_frames_index = np.arange(ref_start_idx, ref_start_idx + self.num_frames, dtype=int)
            break

        gt_frames = video_reader.get_batch(gt_frames_index).asnumpy()
        ref_frames = video_reader.get_batch(ref_frames_index).asnumpy()

        return gt_frames, ref_frames, start_idx

    def worker_init_fn(self, worker_id):
        self.worker_id = worker_id

    def __getitem__(self, idx):
        while True:
            try:
                idx = random.randint(0, len(self) - 1)

                # Get video file path
                video_path = self.video_paths[idx]

                vr = VideoReader(video_path, ctx=cpu(self.worker_id))

                if len(vr) < 3 * self.num_frames:
                    continue

                gt_frames, ref_frames, start_idx = self.get_frames(vr)

                if self.load_audio_data:
                    mel_cache_path = os.path.join(
                        self.audio_mel_cache_dir, os.path.basename(video_path).replace(".mp4", "_mel.pt")
                    )

                    if os.path.isfile(mel_cache_path):
                        try:
                            original_mel = torch.load(mel_cache_path, weights_only=True)
                        except Exception as e:
                            print(f"{type(e).__name__} - {e} - {mel_cache_path}")
                            os.remove(mel_cache_path)
                            original_mel = self.read_audio(video_path)
                            torch.save(original_mel, mel_cache_path)
                    else:
                        original_mel = self.read_audio(video_path)
                        torch.save(original_mel, mel_cache_path)

                    mel = self.crop_audio_window(original_mel, start_idx)

                    if mel.shape[-1] != self.mel_window_length:
                        continue
                else:
                    mel = []

                gt_pixel_values, masked_pixel_values, masks = self.image_processor.prepare_masks_and_masked_images(
                    gt_frames, affine_transform=False
                )  # (f, c, h, w)
                ref_pixel_values = self.image_processor.process_images(ref_frames)

                vr.seek(0)  # avoid memory leak
                break

            except Exception as e:  # Handle the exception of face not detcted
                print(f"{type(e).__name__} - {e} - {video_path}")
                if "vr" in locals():
                    vr.seek(0)  # avoid memory leak

        sample = dict(
            gt_pixel_values=gt_pixel_values,
            masked_pixel_values=masked_pixel_values,
            ref_pixel_values=ref_pixel_values,
            mel=mel,
            masks=masks,
            video_path=video_path,
            start_idx=start_idx,
        )

        return sample