Spaces:
Running
Running
File size: 6,041 Bytes
8d11d43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
# Adapted from https://github.com/guanjz20/StyleSync/blob/main/utils.py
import numpy as np
import cv2
import torch
from einops import rearrange
import kornia
class AlignRestore(object):
def __init__(self, align_points=3, resolution=256, device="cpu", dtype=torch.float16):
if align_points == 3:
self.upscale_factor = 1
ratio = resolution / 256 * 2.8
self.crop_ratio = (ratio, ratio)
self.face_template = np.array([[19 - 2, 30 - 10], [56 + 2, 30 - 10], [37.5, 45 - 5]])
self.face_template = self.face_template * ratio
self.face_size = (int(75 * self.crop_ratio[0]), int(100 * self.crop_ratio[1]))
self.p_bias = None
self.device = device
self.dtype = dtype
self.fill_value = torch.tensor([127, 127, 127], device=device, dtype=dtype)
self.mask = torch.ones((1, 1, self.face_size[1], self.face_size[0]), device=device, dtype=dtype)
def align_warp_face(self, img, landmarks3, smooth=True):
affine_matrix, self.p_bias = self.transformation_from_points(
landmarks3, self.face_template, smooth, self.p_bias
)
img = rearrange(torch.from_numpy(img).to(device=self.device, dtype=self.dtype), "h w c -> c h w").unsqueeze(0)
affine_matrix = torch.from_numpy(affine_matrix).to(device=self.device, dtype=self.dtype).unsqueeze(0)
cropped_face = kornia.geometry.transform.warp_affine(
img,
affine_matrix,
(self.face_size[1], self.face_size[0]),
mode="bilinear",
padding_mode="fill",
fill_value=self.fill_value,
)
cropped_face = rearrange(cropped_face.squeeze(0), "c h w -> h w c").cpu().numpy().astype(np.uint8)
return cropped_face, affine_matrix
def restore_img(self, input_img, face, affine_matrix):
h, w, _ = input_img.shape
if isinstance(affine_matrix, np.ndarray):
affine_matrix = torch.from_numpy(affine_matrix).to(device=self.device, dtype=self.dtype).unsqueeze(0)
inv_affine_matrix = kornia.geometry.transform.invert_affine_transform(affine_matrix)
face = face.to(dtype=self.dtype).unsqueeze(0)
inv_face = kornia.geometry.transform.warp_affine(
face, inv_affine_matrix, (h, w), mode="bilinear", padding_mode="fill", fill_value=self.fill_value
).squeeze(0)
inv_face = (inv_face / 2 + 0.5).clamp(0, 1) * 255
input_img = rearrange(torch.from_numpy(input_img).to(device=self.device, dtype=self.dtype), "h w c -> c h w")
inv_mask = kornia.geometry.transform.warp_affine(
self.mask, inv_affine_matrix, (h, w), padding_mode="zeros"
) # (1, 1, h_up, w_up)
inv_mask_erosion = kornia.morphology.erosion(
inv_mask,
torch.ones(
(int(2 * self.upscale_factor), int(2 * self.upscale_factor)), device=self.device, dtype=self.dtype
),
)
inv_mask_erosion_t = inv_mask_erosion.squeeze(0).expand_as(inv_face)
pasted_face = inv_mask_erosion_t * inv_face
total_face_area = torch.sum(inv_mask_erosion.float())
w_edge = int(total_face_area**0.5) // 20
erosion_radius = w_edge * 2
# This step will consume a large amount of GPU memory.
# inv_mask_center = kornia.morphology.erosion(
# inv_mask_erosion, torch.ones((erosion_radius, erosion_radius), device=self.device, dtype=self.dtype)
# )
# Run on CPU to avoid consuming a large amount of GPU memory.
inv_mask_erosion = inv_mask_erosion.squeeze().cpu().numpy().astype(np.float32)
inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
inv_mask_center = torch.from_numpy(inv_mask_center).to(device=self.device, dtype=self.dtype)[None, None, ...]
blur_size = w_edge * 2 + 1
sigma = 0.3 * ((blur_size - 1) * 0.5 - 1) + 0.8
inv_soft_mask = kornia.filters.gaussian_blur2d(
inv_mask_center, (blur_size, blur_size), (sigma, sigma)
).squeeze(0)
inv_soft_mask_3d = inv_soft_mask.expand_as(inv_face)
img_back = inv_soft_mask_3d * pasted_face + (1 - inv_soft_mask_3d) * input_img
img_back = rearrange(img_back, "c h w -> h w c").contiguous().to(dtype=torch.uint8)
img_back = img_back.cpu().numpy()
return img_back
def transformation_from_points(self, points1: torch.Tensor, points0: torch.Tensor, smooth=True, p_bias=None):
if isinstance(points0, np.ndarray):
points2 = torch.tensor(points0, device=self.device, dtype=torch.float32)
else:
points2 = points0.clone()
if isinstance(points1, np.ndarray):
points1_tensor = torch.tensor(points1, device=self.device, dtype=torch.float32)
else:
points1_tensor = points1.clone()
c1 = torch.mean(points1_tensor, dim=0)
c2 = torch.mean(points2, dim=0)
points1_centered = points1_tensor - c1
points2_centered = points2 - c2
s1 = torch.std(points1_centered)
s2 = torch.std(points2_centered)
points1_normalized = points1_centered / s1
points2_normalized = points2_centered / s2
covariance = torch.matmul(points1_normalized.T, points2_normalized)
U, S, V = torch.svd(covariance)
R = torch.matmul(V, U.T)
det = torch.det(R)
if det < 0:
V[:, -1] = -V[:, -1]
R = torch.matmul(V, U.T)
sR = (s2 / s1) * R
T = c2.reshape(2, 1) - (s2 / s1) * torch.matmul(R, c1.reshape(2, 1))
M = torch.cat((sR, T), dim=1)
if smooth:
bias = points2_normalized[2] - points1_normalized[2]
if p_bias is None:
p_bias = bias
else:
bias = p_bias * 0.2 + bias * 0.8
p_bias = bias
M[:, 2] = M[:, 2] + bias
return M.cpu().numpy(), p_bias
|