File size: 6,041 Bytes
8d11d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Adapted from https://github.com/guanjz20/StyleSync/blob/main/utils.py

import numpy as np
import cv2
import torch
from einops import rearrange
import kornia


class AlignRestore(object):
    def __init__(self, align_points=3, resolution=256, device="cpu", dtype=torch.float16):
        if align_points == 3:
            self.upscale_factor = 1
            ratio = resolution / 256 * 2.8
            self.crop_ratio = (ratio, ratio)
            self.face_template = np.array([[19 - 2, 30 - 10], [56 + 2, 30 - 10], [37.5, 45 - 5]])
            self.face_template = self.face_template * ratio
            self.face_size = (int(75 * self.crop_ratio[0]), int(100 * self.crop_ratio[1]))
            self.p_bias = None
            self.device = device
            self.dtype = dtype
            self.fill_value = torch.tensor([127, 127, 127], device=device, dtype=dtype)
            self.mask = torch.ones((1, 1, self.face_size[1], self.face_size[0]), device=device, dtype=dtype)

    def align_warp_face(self, img, landmarks3, smooth=True):
        affine_matrix, self.p_bias = self.transformation_from_points(
            landmarks3, self.face_template, smooth, self.p_bias
        )

        img = rearrange(torch.from_numpy(img).to(device=self.device, dtype=self.dtype), "h w c -> c h w").unsqueeze(0)
        affine_matrix = torch.from_numpy(affine_matrix).to(device=self.device, dtype=self.dtype).unsqueeze(0)

        cropped_face = kornia.geometry.transform.warp_affine(
            img,
            affine_matrix,
            (self.face_size[1], self.face_size[0]),
            mode="bilinear",
            padding_mode="fill",
            fill_value=self.fill_value,
        )
        cropped_face = rearrange(cropped_face.squeeze(0), "c h w -> h w c").cpu().numpy().astype(np.uint8)
        return cropped_face, affine_matrix

    def restore_img(self, input_img, face, affine_matrix):
        h, w, _ = input_img.shape

        if isinstance(affine_matrix, np.ndarray):
            affine_matrix = torch.from_numpy(affine_matrix).to(device=self.device, dtype=self.dtype).unsqueeze(0)

        inv_affine_matrix = kornia.geometry.transform.invert_affine_transform(affine_matrix)
        face = face.to(dtype=self.dtype).unsqueeze(0)

        inv_face = kornia.geometry.transform.warp_affine(
            face, inv_affine_matrix, (h, w), mode="bilinear", padding_mode="fill", fill_value=self.fill_value
        ).squeeze(0)
        inv_face = (inv_face / 2 + 0.5).clamp(0, 1) * 255

        input_img = rearrange(torch.from_numpy(input_img).to(device=self.device, dtype=self.dtype), "h w c -> c h w")
        inv_mask = kornia.geometry.transform.warp_affine(
            self.mask, inv_affine_matrix, (h, w), padding_mode="zeros"
        )  # (1, 1, h_up, w_up)

        inv_mask_erosion = kornia.morphology.erosion(
            inv_mask,
            torch.ones(
                (int(2 * self.upscale_factor), int(2 * self.upscale_factor)), device=self.device, dtype=self.dtype
            ),
        )

        inv_mask_erosion_t = inv_mask_erosion.squeeze(0).expand_as(inv_face)
        pasted_face = inv_mask_erosion_t * inv_face
        total_face_area = torch.sum(inv_mask_erosion.float())
        w_edge = int(total_face_area**0.5) // 20
        erosion_radius = w_edge * 2

        # This step will consume a large amount of GPU memory.
        # inv_mask_center = kornia.morphology.erosion(
        #     inv_mask_erosion, torch.ones((erosion_radius, erosion_radius), device=self.device, dtype=self.dtype)
        # )

        # Run on CPU to avoid consuming a large amount of GPU memory.
        inv_mask_erosion = inv_mask_erosion.squeeze().cpu().numpy().astype(np.float32)
        inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
        inv_mask_center = torch.from_numpy(inv_mask_center).to(device=self.device, dtype=self.dtype)[None, None, ...]

        blur_size = w_edge * 2 + 1
        sigma = 0.3 * ((blur_size - 1) * 0.5 - 1) + 0.8
        inv_soft_mask = kornia.filters.gaussian_blur2d(
            inv_mask_center, (blur_size, blur_size), (sigma, sigma)
        ).squeeze(0)
        inv_soft_mask_3d = inv_soft_mask.expand_as(inv_face)
        img_back = inv_soft_mask_3d * pasted_face + (1 - inv_soft_mask_3d) * input_img

        img_back = rearrange(img_back, "c h w -> h w c").contiguous().to(dtype=torch.uint8)
        img_back = img_back.cpu().numpy()
        return img_back

    def transformation_from_points(self, points1: torch.Tensor, points0: torch.Tensor, smooth=True, p_bias=None):
        if isinstance(points0, np.ndarray):
            points2 = torch.tensor(points0, device=self.device, dtype=torch.float32)
        else:
            points2 = points0.clone()

        if isinstance(points1, np.ndarray):
            points1_tensor = torch.tensor(points1, device=self.device, dtype=torch.float32)
        else:
            points1_tensor = points1.clone()

        c1 = torch.mean(points1_tensor, dim=0)
        c2 = torch.mean(points2, dim=0)

        points1_centered = points1_tensor - c1
        points2_centered = points2 - c2

        s1 = torch.std(points1_centered)
        s2 = torch.std(points2_centered)

        points1_normalized = points1_centered / s1
        points2_normalized = points2_centered / s2

        covariance = torch.matmul(points1_normalized.T, points2_normalized)
        U, S, V = torch.svd(covariance)

        R = torch.matmul(V, U.T)

        det = torch.det(R)
        if det < 0:
            V[:, -1] = -V[:, -1]
            R = torch.matmul(V, U.T)

        sR = (s2 / s1) * R
        T = c2.reshape(2, 1) - (s2 / s1) * torch.matmul(R, c1.reshape(2, 1))

        M = torch.cat((sR, T), dim=1)

        if smooth:
            bias = points2_normalized[2] - points1_normalized[2]
            if p_bias is None:
                p_bias = bias
            else:
                bias = p_bias * 0.2 + bias * 0.8
            p_bias = bias
            M[:, 2] = M[:, 2] + bias

        return M.cpu().numpy(), p_bias