File size: 5,267 Bytes
8d11d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from latentsync.utils.util import read_video, write_video
from torchvision import transforms
import cv2
from einops import rearrange
import torch
import numpy as np
from typing import Union
from .affine_transform import AlignRestore
from .face_detector import FaceDetector


def load_fixed_mask(resolution: int, mask_image_path="latentsync/utils/mask.png") -> torch.Tensor:
    mask_image = cv2.imread(mask_image_path)
    mask_image = cv2.cvtColor(mask_image, cv2.COLOR_BGR2RGB)
    mask_image = cv2.resize(mask_image, (resolution, resolution), interpolation=cv2.INTER_LANCZOS4) / 255.0
    mask_image = rearrange(torch.from_numpy(mask_image), "h w c -> c h w")
    return mask_image


class ImageProcessor:
    def __init__(self, resolution: int = 512, device: str = "cpu", mask_image=None):
        self.resolution = resolution
        self.resize = transforms.Resize(
            (resolution, resolution), interpolation=transforms.InterpolationMode.BICUBIC, antialias=True
        )
        self.normalize = transforms.Normalize([0.5], [0.5], inplace=True)

        self.restorer = AlignRestore(resolution=resolution, device=device)

        if mask_image is None:
            self.mask_image = load_fixed_mask(resolution)
        else:
            self.mask_image = mask_image

        if device == "cpu":
            self.face_detector = None
        else:
            self.face_detector = FaceDetector(device=device)

    def affine_transform(self, image: torch.Tensor) -> np.ndarray:
        if self.face_detector is None:
            raise NotImplementedError("Using the CPU for face detection is not supported")
        bbox, landmark_2d_106 = self.face_detector(image)
        if bbox is None:
            raise RuntimeError("Face not detected")

        pt_left_eye = np.mean(landmark_2d_106[[43, 48, 49, 51, 50]], axis=0)  # left eyebrow center
        pt_right_eye = np.mean(landmark_2d_106[101:106], axis=0)  # right eyebrow center
        pt_nose = np.mean(landmark_2d_106[[74, 77, 83, 86]], axis=0)  # nose center

        landmarks3 = np.round([pt_left_eye, pt_right_eye, pt_nose])

        face, affine_matrix = self.restorer.align_warp_face(image.copy(), landmarks3=landmarks3, smooth=True)
        box = [0, 0, face.shape[1], face.shape[0]]  # x1, y1, x2, y2
        face = cv2.resize(face, (self.resolution, self.resolution), interpolation=cv2.INTER_LANCZOS4)
        face = rearrange(torch.from_numpy(face), "h w c -> c h w")
        return face, box, affine_matrix

    def preprocess_fixed_mask_image(self, image: torch.Tensor, affine_transform=False):
        if affine_transform:
            image, _, _ = self.affine_transform(image)
        else:
            image = self.resize(image)
        pixel_values = self.normalize(image / 255.0)
        masked_pixel_values = pixel_values * self.mask_image
        return pixel_values, masked_pixel_values, self.mask_image[0:1]

    def prepare_masks_and_masked_images(self, images: Union[torch.Tensor, np.ndarray], affine_transform=False):
        if isinstance(images, np.ndarray):
            images = torch.from_numpy(images)
        if images.shape[3] == 3:
            images = rearrange(images, "f h w c -> f c h w")

        results = [self.preprocess_fixed_mask_image(image, affine_transform=affine_transform) for image in images]

        pixel_values_list, masked_pixel_values_list, masks_list = list(zip(*results))
        return torch.stack(pixel_values_list), torch.stack(masked_pixel_values_list), torch.stack(masks_list)

    def process_images(self, images: Union[torch.Tensor, np.ndarray]):
        if isinstance(images, np.ndarray):
            images = torch.from_numpy(images)
        if images.shape[3] == 3:
            images = rearrange(images, "f h w c -> f c h w")
        images = self.resize(images)
        pixel_values = self.normalize(images / 255.0)
        return pixel_values


class VideoProcessor:
    def __init__(self, resolution: int = 512, device: str = "cpu"):
        self.image_processor = ImageProcessor(resolution, device)

    def affine_transform_video(self, video_path):
        video_frames = read_video(video_path, change_fps=False)
        results = []
        for frame in video_frames:
            frame, _, _ = self.image_processor.affine_transform(frame)
            results.append(frame)
        results = torch.stack(results)

        results = rearrange(results, "f c h w -> f h w c").numpy()
        return results


if __name__ == "__main__":
    video_processor = VideoProcessor(256, "cuda")
    video_frames = video_processor.affine_transform_video("assets/demo2_video.mp4")
    write_video("output.mp4", video_frames, fps=25)