# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py from dataclasses import dataclass from typing import Optional import torch import torch.nn.functional as F from torch import nn from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models import ModelMixin from diffusers.utils import BaseOutput from diffusers.models.attention import FeedForward, AdaLayerNorm from einops import rearrange, repeat @dataclass class Transformer3DModelOutput(BaseOutput): sample: torch.FloatTensor class Transformer3DModel(ModelMixin, ConfigMixin): @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, norm_num_groups: int = 32, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, use_linear_projection: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, add_audio_layer=False, ): super().__init__() self.use_linear_projection = use_linear_projection self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim # Define input layers self.in_channels = in_channels self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) if use_linear_projection: self.proj_in = nn.Linear(in_channels, inner_dim) else: self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) # Define transformers blocks self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, upcast_attention=upcast_attention, add_audio_layer=add_audio_layer, ) for d in range(num_layers) ] ) # Define output layers if use_linear_projection: self.proj_out = nn.Linear(in_channels, inner_dim) else: self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True): # Input assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." video_length = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") batch, channel, height, weight = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) if not self.use_linear_projection: hidden_states = self.proj_in(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) else: inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) hidden_states = self.proj_in(hidden_states) # Blocks for block in self.transformer_blocks: hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep, video_length=video_length, ) # Output if not self.use_linear_projection: hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() hidden_states = self.proj_out(hidden_states) else: hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() output = hidden_states + residual output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) if not return_dict: return (output,) return Transformer3DModelOutput(sample=output) class BasicTransformerBlock(nn.Module): def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout=0.0, cross_attention_dim: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, attention_bias: bool = False, upcast_attention: bool = False, add_audio_layer=False, ): super().__init__() self.use_ada_layer_norm = num_embeds_ada_norm is not None self.add_audio_layer = add_audio_layer self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, ) # Cross-attn if add_audio_layer: self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, ) else: self.attn2 = None # Feed-forward self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) self.norm3 = nn.LayerNorm(dim) def forward( self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None ): norm_hidden_states = ( self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states) ) hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states if self.attn2 is not None and encoder_hidden_states is not None: if encoder_hidden_states.dim() == 4: encoder_hidden_states = rearrange(encoder_hidden_states, "b f s d -> (b f) s d") norm_hidden_states = ( self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) ) hidden_states = ( self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask ) + hidden_states ) # Feed-forward hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states return hidden_states class Attention(nn.Module): def __init__( self, query_dim: int, cross_attention_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: float = 0.0, bias=False, upcast_attention: bool = False, upcast_softmax: bool = False, norm_num_groups: Optional[int] = None, ): super().__init__() inner_dim = dim_head * heads cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim self.upcast_attention = upcast_attention self.upcast_softmax = upcast_softmax self.scale = dim_head**-0.5 self.heads = heads if norm_num_groups is not None: self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True) else: self.group_norm = None self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) self.to_out = nn.ModuleList([]) self.to_out.append(nn.Linear(inner_dim, query_dim)) self.to_out.append(nn.Dropout(dropout)) def split_heads(self, tensor): batch_size, seq_len, dim = tensor.shape tensor = tensor.reshape(batch_size, seq_len, self.heads, dim // self.heads) tensor = tensor.permute(0, 2, 1, 3) return tensor def concat_heads(self, tensor): batch_size, heads, seq_len, head_dim = tensor.shape tensor = tensor.permute(0, 2, 1, 3) tensor = tensor.reshape(batch_size, seq_len, heads * head_dim) return tensor def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): if self.group_norm is not None: hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = self.to_q(hidden_states) query = self.split_heads(query) encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states key = self.to_k(encoder_hidden_states) value = self.to_v(encoder_hidden_states) key = self.split_heads(key) value = self.split_heads(value) if attention_mask is not None: if attention_mask.shape[-1] != query.shape[1]: target_length = query.shape[1] attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) # Use PyTorch native implementation of FlashAttention-2 hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask) hidden_states = self.concat_heads(hidden_states) # linear proj hidden_states = self.to_out[0](hidden_states) # dropout hidden_states = self.to_out[1](hidden_states) return hidden_states